HOLY CROSS COLLEGE (Autonomous) NAGERCOIL.

(Affiliated to Manonmaniam Sundaranar University, Tirunelveli. Nationally Re-Accredited with A⁺ grade by NAAC (CGPA 3.35)) Kanyakumari District, Tamil Nadu, India.

DEPARTMENT OF CHEMISTRY

Teaching Plan Semester I to VI (UG)

2020 - 2023

Semester - I

Major Core I: GENERAL CHEMISTRY - I

Course Code: CC2011

Hours Per we	eek Credits	Total Hours	Marks
4	4	60	100

Objectives

- To gain basic knowledge on classification nomenclature of organic compounds
- To understand the quantum theory and wave mechanical concept
- To understand the chemistry of s block elements and the principles of volumetric analysis

	Course Outcome									
COs	Upon completion of this course, students will	PSO	Cognitive							
	be able to	Addressed	Level							
CO - 1	understand the structure and naming of various	PSO-1	U							
	organic compounds									
CO - 2	interpret various electronic effects and chemical	PSO-3	An							
	bonding									
CO - 3	analyse the periodic properties of elements	PSO-2	An							
CO - 4	apply wave mechanical concept in other fields	PSO-6	А							
CO - 5	predict the properties of elements and the	PSO-6	An							
	principle behind volumetric analysis									

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Classific	ation and Nomenclature				
	2	Classification of organic compounds - based on the nature of carbon skeleton and functional groups - classification of C and H atoms of organic compounds (primary/secondary/tertiary) IUPAC system of nomenclature of common organic compounds (upto C- 10) - alkanes, alkenes and alkynes. Naming of cycloalkanes, bicycloalkanes with and without bridges and aromatic compounds	2	Classify organic compounds Know about the IUPAC nomenclature of organic compounds	Lecture and power point presentation Lecture and power point presentation	Evaluation through Multiple choice questions, short test, quiz, slip test and group discussion Formative assessment I

II	3 4 Bonding	Naming of organic compounds with one functional group - halogen compounds, alcohols, phenol, aldehydes, ketones, carboxylic acids and its derivatives, cyano compounds, amines, nitro compounds Naming of compounds with two functional groups - naming of compounds with more than one carbon chain. Naming of heterocyclic compounds containing one and two hetero atoms present in five/six membered rings in Organic Molecules	3	Learn to name organic compounds with one functional group Know to name organic compounds	Lecture and seminar Lecture with power point presentation	
	1	Hybridization and geometry - bond angle, bond length, bond strength of C-H and C-C bonds -Van der Waal's interactions, Inter & Intra molecular forces and their effects on physical properties Electronic effects - inductive effect, resonance effect - drawing of resonance structures - conditions for resonance - stability of resonance structures	3 3	Classify the elements based on the force of attraction and properties. Know about various types of electronic effects	Question answer session Lecture	Evaluation through Multiple choice questions, short test, quiz and slip test Formative assessment I
	3	Hyper conjugation, electromeric effect, steric effect - steric overcrowding - steric inhibition of resonance - steric relief (with examples) Dissociation of bonds - homolysis and heterolysis - radicals, carbocations, carbanions - electrophiles and nucleophiles - Influence of electronic effects - dipole moment - relative strengths of acids and bases - stability of olefins - stability of radicals, carbocations and carbanions	3	Distinguish various effects Know about electrophiles, nucleophiles and stability of different ions	Lecture with power point presentation and Group discussion Lecture with power point presentation	

III	I Periodic Properties						
	1	Atomic orbitals - Quantum numbers- Principal, Azimuthal, Magnetic and Spin quantum numbers and their significance	2	Know about various quantum numbers and filling up of atomic orbitals	Seminar and power point presentation	Evaluation through Multiple choice questions, short test,	
	2	Principles governing the occupancy of electrons in various quantum levels- Pauli's exclusion principle - Hund's rule- Aufbau Principle, (n+1) rule	2	Learn about different principles governing the occupancy of electrons	Lecture and Problem solving	quiz and class test Formative assessment II	
	3	Stability of half-filled and completely filled orbitals- inert pair effect. Variation of metallic characters - Factors affecting the periodic properties	2	Remember the factors affecting the periodic properties	Lecture and Problem solving		
	4	Anomalies and variations in atomic radius, ionic radius, electronic configuration	2	Calculate the atomic radius and ionic radius	Problem solving	-	
	5	Variation of electron affinity and electro negativity, ionization energy, metallic character of elements along the group and periods	2	Distinguish various periodic properties	Illustration, Seminar and Power point presentation		
	6	Influence of various characters on stability, colour, coordination number, geometry, physical and chemical properties	2	Calculate coordination number	Power point presentation		
IV	Atomic	Structure					
	1	Planck's quantum theory - Photoelectric effect, Compton effect	2	Understand the Plank's quantum theory	Power point presentation and videos	Evaluation through Multiple choice	
	2	Bohr's model of hydrogen atom	2	Know Bohr's model of hydrogen atom	Lecture	questions, short test, quiz and	
	3	Wave particle duality, de Broglie equation, Heisenberg uncertainty principle	2	Learn to derive de Broglie equation	Lecture	class test	

	4	Eigen function and Eigen value - Postulates of Quantum mechanics	2	Differentiate Eigen function and Eigen value	Problem solving	Formative assessment II
	5	Schrodinger's time independent wave equation (no derivation), wave functions and its physical properties -Normalization and Orthogonal function	4	Understand the importance of Schrodinger's wave equation	Lecture	
V	· ·	ck elements ples of Volumetric Analysis				
	1	Position of hydrogen in the periodic table, General characteristics of s - block elements. Compounds of s- block metals - oxides, hydroxides, peroxides, superoxide's-preparation and properties - oxo salts - carbonates - bicarbonates - nitrates - halides and polyhalides	3	Recognize the various metals, oxides and hydroxides	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz and class test Formative assessment I
	2	Extraction of Be and Mg - physical and chemical properties - Uses	2	Understand the extraction process	Lecture with videos	
	3	Complexes of s-block metals - complexes with crown ethers - biological importance sodium and potassium - Organometallic compounds of Li and Be	1	Explicate the biological importance of sodium and potassium	Seminar	
	4	General principles of volumetric Analysis, Types of titrations. Requirements for titrimetric analysis. Concentration systems	1	Know about the principles of volumetric analysis	Power point presentation, seminar	
	5	Primary and secondary standards, criteria for primary standards, preparation of standard solutions, standardization of solutions. Limitation of volumetric analysis, endpoint and equivalence point	2	Understand the criteria of preparation of standard solutions	Demonstration	
	6	Neutralisation-titration curve, theory of indicators, choice of indicators. Use of phenolphthalein and methyl orange	1	Acquire knowledge about the use of indicators.	Demonstration	

characteristics. Problems based on titrimetric analysis		7		2	Analyse the stability of complexes	Problem solving		
--	--	---	--	---	--	--------------------	--	--

Course Instructor: Dr. R. Gladis Latha

Semester I Allied Chemistry - Botany and Zoology Major Chemistry for Life Sciences Course Code: CA2011

Hours Per week	Credits	Total Hours	Marks
4	3	60	100

Objectives:

- To acquire knowledge on atomic structure and bonding
- To understand the importance of photochemistry and catalysis
- To apply the principles of chromatography techniques

Course Outcome

COs	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	remember the structure and bonding in atoms and molecules	PSO-1	R
CO-2	analyse the types of bonding and the ways of expressing concentration in molecules	PSO-2	An
CO-2	understand the concepts of biophysical analysis, catalysis and buffer action	PSO-1	U
CO-3	apply the concepts of photochemistry and chromatography to various chemical processes.	PSO-6	А

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Atomic S	Structure				
	1	Dual nature of electron, de-Broglie equation Davisson and Germer experiment	2	Acquire knowledge on Dual nature of electron and de- Broglie equation Understand Davisson and Germer	Lecture, power point presentation and videos Lecture and power point presentation	Evaluation through Multiple choice questions, short test,
	3	Heisenberg's uncertainty principle and its significance	1	experiment Understand Heisenberg's uncertainty principle and its significance	Lecture, power point presentation and discussion	quiz Formative assessment I

	4	Compton effect -	3	Distinguish eigen	Lecture and power	
		Schrodinger's wave		values and eigen	point presentation	
		equation and its		functions		
		significance, eigen				
		values and eigen				
		functions, quantum				
		numbers and their				
		significance				
	5	Atomic orbitals -	1	Differentiate between	Lecture, power	
		significance, shapes,		orbit and orbital	point presentation	
		difference between			and illustration	
		orbit and orbital				
	6	Rules for filling up	2	Know about different	Lecture and power	
		of orbitals - Pauli's		principles governing	point presentation	
		exclusion principle,		the filling up of		
		Aufbau principle and		orbitals		
		Hund's rule				
	7	Electronic	2	Gain knowledge on	Lecture and power	
		configuration of		the filling up of	point presentation	
		elements up to 20		atomic orbitals		
II	Chemica	al bonding				
	1	Ionic bond,	1	Know about ionic	Lecture and power	Evaluation
		formation of ionic		bond and its	point presentation	through
		bond, general		characteristics		Multiple
		characteristics of				choice
		ionic compounds				questions,
	2	Lattice energy,	2	Understand lattice	Lecture and power	short test,
		Born-Haber cycle		energy	point presentation	quiz
		and its applications				
	3	Covalent bond -	2	Gain Knowledge	Lecture and power	Formative
		formation of		about Covalent bond	point presentation	assessment I
		covalent bond with				
		examples				
		characteristics of				
		covalent compounds				
	4	Ionic character in	1	Acquire knowledge	Lecture and power	
		covalent compounds,		about Ionic character	point presentation	
		Fajan's rule		and Fajan's rule		
	5	Coordinate bond -	2	Understand	Lecture and Power	
		formation of		Coordinate bond	point presentation	
		coordinate bond with		formation		
		examples.				
	6	Metallic bond -band	2	Explicate the	Lecture with	
		theory, conductors,		difference between	power point	
		insulators and		conductors,	presentation	
		semiconductors.		insulators,		
				semiconductors		

	7	Hydro gon han ding	2	Understand	L a atuma milita	1
	7	Hydrogen bonding -	2	Understand	Lecture with	
		types - inter and		Hydrogen bonding	power point	
		intramolecular and		and its effect	presentation	
		effect of hydrogen				
		bonding.				<u> </u>
III	Photoch	, , , , , , , , , , , , , , , , , , ,	2	D:00 (1)	T / 1	
	1	Importance of	3	Differentiate between	Lecture and power	Evaluation
		photochemistry,		thermal and	point presentation	through
		difference between		photochemical		Multiple
		thermal and		reactions		choice
		photochemical				questions,
		reactions. Laws of				short test,
		photochemistry -				quiz
		Beer-Lambert's				E di
		Law, Grother's-				Formative
		Drapers law and				assessment
	-	Stark-Einstein's law	-			II
	2	Quantum efficiency,	3	Understand various	Lecture and power	
		Electronic		electronic excitations	point presentation	
		excitations - singlet				
		and triplet states,				
		Jablonski diagram,				
		internal conversion -				
		intersystem crossing				
		- fluorescence,				
		phosphorescence.				
		Difference between				
		fluorescence and				
		phosphorescence				
	3	Types of	2	Differentiate primary	Lecture and power	
		photochemical		and secondary	point presentation	
		reactions based on		process of		
		quantum efficiency		photochemical		
		$(\phi = 1, \phi < 1 \text{ and } \phi >$		reactions		
		1) - primary and				
		secondary process of				
		photochemical				
		reactions				
	4	Photochemical rate	2	Acquire knowledge	Lecture with	
		law - kinetics of		about kinetics of	power point	
		photochemical		photochemical	presentation	
		combination of H ₂		combination of H ₂		
		and Cl_2 and		and Cl_2 -		
		decomposition of HI		decomposition of HI		
	5	Photosensitization,	2	Differentiate	Lecture with	
		photosensitizers,		chemiluminescence	power point	
		chemiluminescence		and bioluminescence.	presentation	
		and bioluminescence				

IV	Biophysi	cal Analysis and Catal	lysis			
	1	Osmosis, osmotic pressure and isotonic solutions	1	Understand Osmosis, osmotic pressure, isotonic solutions	Lecture with power point presentation	Evaluation through Multiple
	2	Determination of molar mass by osmotic pressure measurement	2	Acquire knowledge on molar mass by osmotic pressure measurement	Lecture with power point presentation	choice questions, short test, quiz
	3	Reverse osmosis	1	Understand reverse osmosis	Lecture and power point presentation	Formative assessment
	4	Adsorption - types, factors influencing adsorption and applications of adsorption	2	Acquire knowledge on adsorption, types, factors influencing adsorption and its applications	Lecture and power point presentation	Π
	5	Catalysis - types, theories, intermediate compound formation theory and adsorption theory	3	Understand catalysis, types and theories	Lecture and power point presentation	
	6	Enzyme catalysis - Michaelis-Menten equation and theory	3	Understand Enzyme catalysis, Michaelis, Menten equation	Lecture and power point presentation	
V	Analytic	al Chemistry				
	1	Methods of expressing concentration - normality, molarity, molality, mole fraction, ppm and ppb	2	Understand methods of expressing concentration of solution	Lecture and power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Ionic product of water - pH and pOH	1	Acquire knowledge about Ionic product of water, pH and pOH	Lecture and power point presentation	Formative assessment I
	3	Strength of acids and bases - K_a and K_b , pK_a and pK_b	2	Understand strength of acids and bases	Lecture and power point presentation	
	4	Buffer solutions - examples and theory of buffer action	1	Know about buffer solutions and theory of buffer action	Lecture and power point presentation	

5 Chromatograph classification, Column chromatograph principle, experimental techniques, fac affecting colum efficiency and applications	iy - etors nn its	Understand chromatography and column chromatography	Lecture with videos	
6 TLC - principl experimental techniques, advantages, limitations and applications		Know about TLC	Lecture with videos	
7 GC – principle experimental techniques and applications		Acquire knowledge about GC	Lecture with videos	
8 HPLC - princip and experimen technique		Understand HPLC	Lecture with videos	

Course Instructor: Dr. S. Ajith Sinthuja

Semester - I Part IV: NME Applied Chemistry - I Course Code: CNM201

Hours Per week	Credits	Total Hours	Marks
2	2	30	100

Objectives:

- To know the preparation and importance of agrochemicals
- To acquire knowledge about soaps and sugar
- To understand the chemicals used in day to day articles

Course Outcome

СО	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	remember the importance of soaps and detergents	PSO-2	R
CO-2	analyse the characteristics and advantages of agrochemicals	PSO-2	An
CO-2	understand the process of manufacture of sugar and paper	PSO-4	U
CO-3	apply the chemical reactions to synthesize day to day articles	PSO-4	А

Unit	Section	Topics	Hours	Learning outcome	Pedagogy	Assessment / Evaluation
Ι	Fertilize	ers				
	1	Plant nutrients - macronutrients - micronutrients -need for fertilizers - characteristics of a good fertilizer -role of N, P and K in plant growth	2	Know the role of nutrients and fertilizers in plants	Lecture and power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Classification of fertilizers - natural fertilizers - artificial fertilizers - manufacture and uses of artificial fertilizers -urea - calcium cyanamide	2	Classify fertilizers and understand the method of manufacturing	Lecture and discussion	Formative assessment I

	3	Calcium ammonium nitrate - superphosphate of lime- triple superphosphate - potassium chloride. Biofertilizers and their advantages	2	Remember the methods of manufacture of fertilizers	Explanation using equations	
Π	Pesticid				1	I
	1	Pesticides- classification based on the use and chemical composition. Insecticides- structure and uses of lead arsenate - calcium arsenate - methoxychlor - baygon - malathion- D.D.T BHC	2	Classify and know the structure and uses of pesticides	Lecture	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
	2	Fungicides - preparation and uses of limesulphur - bordeaux mixture - sodium sulphate - thallium sulphate	2	Remember the uses and methods of preparation of fungicides	Lecture and group discussion	
	3	Weedicides - structure and uses of butachlor - eptam - DNOC. Rodenticides - preparation and uses of zinc phosphide - aluminium phosphide - warfarin	2	Analyse the characteristics and advantages of weedicides and rodenticides	Lecture and power point presentation	
III	Soaps a	nd detergents				
	1	Soaps -classification -hard soap - soft soap - raw materials -manufacture of toilet soap - transparent soap - liquid soap - medicated soap - herbal soap - cleansing action of soap	3	Acquire knowledge about soaps	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz Formative assessment II

	2	Detergents - classification - examples- advantages of detergents over soaps -detergent action -detergent chemicals-additives - excipients - colors - flavours - environmental hazards	3	Remember the importance of detergents	Lecture and group discussion	
IV	Sugar a	nd Paper industry				
	1	Sugar -manufacture - double sulphitation process - refining and grading of sugar-sugar substitute - saccharin - synthesis and uses - manufacture of ethanol from molasses.	2	Understand the process of manufacture and uses of sugar and sugar substitute	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz Formative assessment
	2	Paper - manufacture - production of wood pulp by sulphate process - processing - blending - beating - refining and calendaring -	2	Understand the process of manufacture of paper	Lecture and discussion	Π
	3	Types of paper - printing paper - newsprint paper - writing paper - wrapping paper - bond paper - art paper - blotting paper - tissue paper - parchment paper - cardboard.	2	Remember the types of paper	Peer group teaching	
V	Chemic	als in day-to-day life		1	I	1
	1	Ingredients and preparation of tooth powder - tooth paste - writing inks - gum paste - boot polish - talcum powder	3	Apply chemical principles to prepare articles of day - to- day life.	Lecture with power point presentation	Evaluation through Multiple choice questions, short test,

	2	Ingredients and	3	Apply chemical	Peer group	quiz
		preparation of		principles to prepare	teaching	
		sealing wax - agar		articles of day - to-		Formative
		agar - chalk crayons		day life		assessment
		-liquid blues -				Ι
		camphor tablets -				
		agar battis -				
		phenoyle- moth				
		balls.				

Course Instructor: Ms. L. Deva Vijila

Semester – II Major Core – II: GENERAL CHEMISTRY - II Course Code: CC2021

Hours Per week	Credits	Total Hours	Marks
4	4	60	100

Objectives

- 1. To learn the preparation, properties and importance of aliphatic hydrocarbons and alicyclic compounds.
- 2. To understand the principles and theories of chemical bonding metallurgical processes.
- 3. To study the gas laws, physical properties of liquids and the classification of liquid crystals

Course Outcome

COs	Upon completion of this course, students will be able to	PSO Addressed	Cognitive Level
CO - 1	understand the preparation, properties of organic compounds	PSO-1	U
CO - 2	apply the theories in the preparation of compounds	PSO-6	А
CO - 3	prepare and evaluate compounds based on their application and structure	PSO-4	Е
CO - 4	predict the properties of elements and the principles of volumetric analysis	PSO-6	Y
CO - 5	analyse the properties of matter	PSO-2	Y
CO - 6	learn the basics of metallurgy and the theories about gases	PSO-1	U

Unit	Module	Торіс	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Aliphatio	c Compounds				
	1	Alkanes - preparation, physical properties, reactions, reactions with radical mechanism for substitution reaction	3	Understand the preparation and properties of alkanes	Lecture and discussion	Evaluation through Multiple choice questions,
	2	Alkenes: Preparation from alcohol, haloalkane, dihaloalkanes and alkynes - reactions of alkenes	3	Know about alkenes and the reactions	Lecture and discussion	short test, quiz and class test

	3	Hydroboration, hydroxylation, ozonolysis and epoxidation - peroxide effect - allylic substitution, oxidation by KMnO4 and polymerization	2	Gain knowledge about the reactions of alkenes	Lecture	Formative assessment I
	4	Synthesis of - Dibenzyl, cis and trans 2-butene, propanal and 1-methyl cyclohexanol	2	Prepare various compounds from alkenes	Lecture	
	5	Akynes: preparation, reactions - addition of hydrogen, halogen, hydrogen halide, water, HCN, CH ₃ COOH - dimerisation and cyclisation - acidity of terminal alkynes	2	Understand the preparation and properties of alkynes	Question answer session and lecture	
II	Alicyclic	Compounds				
	1	Cycloalkanes: Preparation - reactions -cycloaddition, dehalogenation, pyrolysis of calcium salt of dicarboxylic acid	3	Know about preparation and reactions of cycloalkanes	Lecture with power point presentation	Evaluation through Multiple choice questions, short test,
	2	Wurtz reaction -stability of cycloalkanes - Baeyer's strain theory. Cycloalkenes: Preparation and reactions	3	Know the stability of cycloalkanes	Lecture with illustration	quiz Formative assessment I
	3	Preparation of conjugate dienes - reactions - 1,2 and 1,4 addition and Diels- Alder reaction, Synthesis of trans 2-chloro cyclopentanol	3	Understand clearly about the reactions and synthesis of compounds	Lecture, Discussion	
	4	Synthesis trans-2 methylcyclopentanol, cis and trans 1,2cyclohexanediol, cyclohexene, 2,3- butanedione and adipic acid	2	Study the synthesis of compounds	Lecture, Discussion	

III	Chemica	l bonding				
	1	Ionic bond - Properties of ionic compounds, factors favoring the ionic bond formation - ionization potential - electron affinity - electronegativity - Lattice energy - Born-Haber Cycle - Polarizing power and Polarizability	3	Understand clearly about ionic bond and lattice energy	Lecture with illustration	Evaluation through Multiple choice questions, short test, quiz
	2	Transition from ionic to covalent character and vice versa - Fajan's rules - Covalent bond - Properties of covalent compounds - structure and bonding of homo and heteronuclear molecules	3	Learn covalent bonding	Lecture with illustration	Formative assessment II
	3	Hydrogen bonding - types, effect on properties - Hybridisation - sp ³ ,sp ² , sp,dsp ² ,d ² sp ³ ,d ³ sp ³ - Examples - BeCl ₂ , BF ₃ , SiCl ₄ , PCl ₅ , SF ₆ , IF ₇ ,H ₂ O, NH ₃ , XeF ₆	3	Analyze the effects of hydrogen bonding and types of hybridization	Lecture	
	4	VSEPR Theory – Postulates – MO Theory – Bonding and anti-bonding orbitals – Applications of MO theory H ₂ , He, N ₂ , O ₂ , HF and CO molecules – Comparison of VB and MO theories	3	Know about VSEPR and MO theories	Lecture with power point presentation and illustration	
IV	Metallur					
	1	Occurrence of metals – basic metallurgical operations and metallurgy process – General methods involved in extraction of metals	2	Know about various metallurgical processes	Lecture	Evaluation through Multiple choice questions, short test,
	2	Concentration of ores – froth floatation, magnetic separation, calcination, roasting, smelting, flux, aluminothermic process	1	Understand about different concentration methods	Lecture and discussion	quiz Formative assessment II
	3	Extraction processes– Chemical reduction – electrolytic reduction – metal displacement	2	Acquire knowledge about extraction processes	Lecture	

	4	Refining methods - distillation - fractional crystallization - electrolysis. Zone refining van Arkel de Boer methods	1	Know about various refining methods	Lecture and discussion	
	5	Electrolytic refining - ion exchange method - extraction - chemical properties and uses of Ti, W, Mo, V, and Ni	4	Study the extraction and properties of different metals	Lecture with power point presentation	
V	Gas and	Liquid state			L	
	1	Ideal gas: Kinetic theory of gases - Postulates and derivation of kinetic gas equation, derivation of gas laws-Maxwell's distribution of molecular velocities	3	Know about the theory of gases and derivation of gas equation	Lecture and discussion	Evaluation through Multiple choice questions, short test, quiz
	2	Types of molecular velocities - collision diameter - collision frequency - mean free path	2	Know about molecular velocities	Lecture	Formative assessment I
	3	Degrees of freedom - translational, rotational and vibrational - Principle of equipartition of energy - Behaviour of real gas - Vander Waals equation of state - derivation	3	Understand the different degrees of freedom and behaviour of real gases	Lecture with Illustration	
	4	Liquid state: Physical properties - Trouton's rule - surface tension - Effect of temperature on surface tension - viscocity - effect of pressure and temperature - refraction - refractive index - specific and molar refraction	2	Learn about liquid state	Lecture and discussion	
	5	Liquid crystals: Vapour pressure temperature diagram – thermography – classification of thermotropic liquid crystals – nematic, smetic and cholesteric liquid crystals with examples.	2	Know about different types of liquid crystals.	Lecture and discussion	

Course Instructor: Ms. L. Deva Vijila

Allied Chemistry - Botany and Zoology Major Chemistry of Biomolecules Course Code: CA2021

Number of Hours Per week	Number of Credits	Total Number of Hours	Marks						
4	3	60	100						

Objectives:

1. To acquire knowledge about the chemistry of biomolecules

2. To understand the structure and functions of biomolecules

Course Outcome								
COs	Upon completion of this course, students will be able to	PSO Addressed	Cognitive Level					
CO-1	remember the classification of biomolecules	PSO-1	R					
CO-2	understand the structure, function and metabolism of biomolecules	PSO-1	U					
CO-3	apply the chemistry of biomolecules in industry and medicine	PSO-6	А					
CO-4	analyse and identify biomolecules	PSO-2	Y					

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Carbohy	drates				
	1	Introduction - sources of carbohydrates in the diet - classification and functions	2	Understand the sources, classification and functions of carbohydrates in the diet	Lecture with illustration	Evaluation through Multiple choice questions,
	2	Glucose and fructose - reactions - interconversions and mutarotation	1	Gather knowledge on the reaction interconversions and mutarotation of glucose and fructose	Lecture and discussion	short test, quiz Formative assessment I
	3	Tests for carbohydrates - Molisch's, Benedict and Fehlings tests	1	Know the tests for carbohydrates	Lecture with power point presentation	
	4	Digestion - absorption - metabolism of carbohydrates	3	Understand the metabolism of carbohydrates.	Lecture and discussion	
	5	Regulation of blood sugar - diabetes mellitus	1	Study the regulation of blood sugar	Lecture and discussion	

	6	Properties and uses of	2	Know the properties	Lecture with	
	Ŭ	sucrose, starch and	-	and uses of sucrose,	power point	
		cellulose		starch and cellulose.	discussion	
	7	Differences	2	Differentiate	Lecture with	
		between starch and	-	between starch and	power point	
		cellulose		cellulose	discussion	
II	Amino A	Acids and Proteins				
	1	Amino acids -	2	Understand the	Lecture and	Evaluation
		classification -		classification of amino	discussion	through
		isolation from proteins		acids		Multiple
		- Zwitter ion formation				choice
		and isoelectric				questions,
		point				short test,
	2	Synthesis of glycine,	2	Study the synthesis of	Lecture and	quiz
		alanine and phenyl		amino acids	discussion	
		alanine				Formative
	3	Peptides - peptide	2	Know the synthesis of	Lecture with	assessment I
		bond - synthesis of		peptides	power point	
		dipeptides			discussion	
	4	Proteins -	2	Study the classification	Lecture with	
		classification based on		of proteins	power point	
		structure and functions			discussion	
	5	Primary, secondary,	2	Acquire knowledge on	Lecture and	
		tertiary and		structure of proteins.	discussion	
		quaternary structure of				
		proteins				
	6	Denaturation of	2	Understand	Lecture with	
		proteins - Tests for		denaturation of proteins	power point	
		proteins - Ninhydrin			discussion	
		and biuret tests				
III	Nucleic	Acids and Enzymes			1	1
	1	Nucleic acids -	3	Know the structure of	Lecture and	Evaluation
		nucleosides and		DNA	discussion	through
		nucleotides. Structure				Multiple
		of DNA - denaturation				choice
		and renaturation of				questions,
		DNA - replication of				short test,
		DNA				quiz
	2	Hydrogen bonding in	2	Study the bonding in	Lecture with	E
		DNA. Stabilizing		DNA molecules	power point	Formative
		forces in protein and			discussion	assessment
		DNA -Vander waal's				II
		forces, dipole-dipole				
		and dipole-induced				
		dipole interactions			T4 *4	
	3	Structure of RNA -	2	Acquire knowledge on	Lecture with	
		Types of RNA.		structure of RNA	power point	
		Difference between			discussion	
		DNA and RNA				

					presentation	assessment I
	5	and classification	Ĺ	Classify normones	power point	Formative
	3	Hormones introduction	2	Classify hormones	Lecture with	4 ⁴¹²
		E and K		deficiency	presentation	quiz
	2	of Vitamin A, B, C, D,	4	caused by vitamin	power point	short test,
	2	Deficiency diseases	2	Recognize the diseases	Lecture with	questions,
		function		vitamins	presentation	choice
		- classification - Sources - biological		biological functions of	power point presentation	through Multiple
	1	- classification -	3	classification and		
v		Vitamins -introduction	3	Understand the	Lecture with	Evaluation
V	Vitamin	and Rancidity s and Hormones				
		fats. Hydrogenation			presentation	
		animal and vegetable		and vegetable fats	power point	
	6	Distinction between	3	Differentiate animal	Lecture with	
		value and Iodine value		oils		
		saponification		iodine value of fats and		
		oils - acid value,		saponification and	discussion	
	5	Estimation of fats and	3	Determine the	Lecture and	
		of oils				
		extraction and refining		refining of oils	discussion	
		oils and fats -		of extraction and	power point	
	4	Common fatty acids in	2	Understand the process	Lecture with	
		uses				II
		characteristics and		of oils and fats		assessment
		definition -		characteristics and uses	discussion	Formative
	3	Oils and fats -	1	Describe the	Lecture and	
				and glycolipids		quiz
		and glycolipids		phospholipids	discussion	short test,
		phospholipids		functions of	power point	questions,
	2	Biological functions of	2	Understand the	Lecture and	choice
		functions			discussion	Multiple
		properties - biological	-	properties	power point	through
	1	Lipids - classification -	1	Classify lipids and its	Lecture with	Evaluation
IV	Lipids.	Dils and Fats			L	l
		application of enzymes		of enzymes	discussion	
	6	Industrial and medical	1	Study the application	Lecture and	
		inhibitors				
		and non-reversible				
		inhibitors - reversible		coenzymes	discussion	
		coenzymes. Enzyme		of cofactors and	power point	
	5	Cofactors and	2	Know the importance	Lecture with	
		enzyme activity				
		influencing				
		action -factors				
		Mechanism of enzyme				
		characteristics -		enzymes	ubeubbion	
	-	classification and	2	classification of	discussion	
	4	Enzymes -	2	Understand the	Lecture and	

4	Structure and functions of thyroxin, adrenaline, bile acids, progesterone, testosterone and oestrone	3	Explain the structure and functions of hormones	Lecture	
5	Effect of hormone activity on biological	2	Understand the effect of hormone on biological	Lecture	
	functions.		functions		

Course Instructor: Dr. M. Anitha Malbi

Semester - II

Part IV: NME

Applied Chemistry - II

Course Code: CNM202

Number of Hours Per week	Number of Credits	Total Number of Hours	Marks
2	2	30	100

Objectives:

1. To acquire knowledge on petroleum and petroleum products

2. To know about the preparation of cosmetics and perfumes

3. To understand the manufacture of matches and characteristics of paints and pigments

COs	Upon completion of this course, the students will	PSO	Cognitive
	be able to:	Addressed	Level
CO-1	remember the refining of petroleum and	PSO-4	R
	manufacture of petroleum products		
CO-2	analyse the therapeutic uses of pharmaceuticals	PSO-7	Y
CO-3	understand the process of manufacture of cosmetics and perfumes	PSO-8	U
CO-4	analyse the characteristics of matches, explosives, paints and pigments	PSO-2	Y

Course Outcome

Unit	Module	Topics	Hours	Learning outcome	Pedagogy	Assessment / Evaluation				
Ι	Petroleum									
	1	Petroleum - refining of petroleum - fractional distillation - cracking - thermal and catalytic cracking - advantages of catalytic cracking - octane rating - anti knock agents - cetane rating	3	Know the process of refining of petroleum and the importance of cracking	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz				
	2	Petrochemicals - direct and indirect petrochemicals - methods involved in manufacture of petrochemicals - alkylation - pyrolysis	3	Understand the methods involved in the manufacture of petrochemicals	Lecture and discussion	Formative assessment I				

II	Pharmace	euticals				
	1	Preparation and therapeutic uses of the following: Antiseptics - alum - zinc oxide - boric acid. Mouth wash - hydrogen peroxide. Antacid - aluminium hydroxide. Analgesics - aspirin - paracetamol. Haematinics - ferrous fumerate - ferrous gluconate. Laxatives - epsom salt - milk of magnesia	6	Acquire knowledge about the therapeutic uses of pharmaceuticals	Lecture	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
III	Cosmetics	s and Perfumes				
	1	Preparation and uses - shampoo - hair dye - face cream - sun screen lotion - nail polish - nail polish removers - lipsticks	3	Acquire knowledge about cosmetics	Lecture with power point presentation	Evaluation through Multiple choice questions, short test,
	2	Perfumes - ingredients - isolation of essential oils - preparation of odorous substances - vanillin - diphenyl oxide	3	Remember the preparation of perfumes	Lecture and discussion	quiz Formative assessment II
IV	Matches a	and Explosives				
	1	Safety matches - classification - composition - manufacture of safety matches. Pyrotechny - composition of fireworks	3	Understand the process of manufacture and uses of safety matches and fire works	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Explosives - characteristics - classification - low explosives - gun powder - smokeless powder - primary explosives - preparation and uses of lead azide - mercury fulminate - high explosives - picric acid -dynamite	3	Gain knowledge about the classification of explosives	Lecture and discussion	Formative assessment II

V	Paints and	Paints and Pigments								
	1	Paints - general characteristics - constituents - pigment - vehicle - thinners - driers - plasticizers - fillers - anti- skinning agents - mechanism of film formation - paint removers - constituents.	3	Gain knowledge about the characteristics and constituents of paints.	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz Formative				
	2	Pigments - manufacture of white lead - lithopone - titanium dioxide - ultra marine blue - red lead - chrome yellow- Prussian blue.	3	Know the methods of manufacturing pigments.	Peer group teaching	assessment I				

Course Instructor: Dr. S. Ajith Sinthuja

Semester – III Major Core – III : GENERAL CHEMISTRY - III Course Code: CC2031

Number of Hours Per week	Number of Credits	Total Number of Hours	Marks
4	4	60	100

Objectives

- To gain knowledge on aromaticity, aromatic compounds and electrophilic substitution reactions.
- To understand the characteristics of (Group 13 and 14) Group 14 and 15)
- To gain knowledge on different colloids and photochemical processes

Course Outcome

COs	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO - 1	gain knowledge on aromatic compounds	PSO -1	U
CO - 2	synthesize aromatic compounds	PSO -4	Ap
CO - 3	remember the characteristics of group 13 and 14 elements	PSO -2	U
CO - 4	predict the chemistry of nitrogen and oxygen family	PSO -2	Е
CO - 5	to understand the different colloidal systems	PSO -1	Ap
CO - 6	explain the various photochemical processes	PSO -1	U

Unit	Module	Торіс	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Aromatic	c Compounds				
	1	Aromaticity - definition - Huckel's rule - consequence of aromaticity-structure of benzene - stability, carbon-carbon bond lengths in benzene ring - resonance energy	3	Understand about aromaticity, stability of benzene and resonance energy	Lecture and discussion	Evaluation through Multiple choice questions, short test, quiz Formative
	2	Aromatic electrophilic substitution - general pattern of the mechanism involving σ and π complexes, mechanism of nitration, halogenation, sulphonation	3	Know about Aromatic electrophilic substitution reactions	Lecture and discussion	assessment I

	3	Mercuration, formylation and Friedel-Crafts reaction - Energy profile diagrams. Activating and deactivating substituents - orientation in mono substituted benzenes Reactions of aromatic aida abain balageneticn	2	Gain knowledge about activating and deactivating substituents Know about reactions	Lecture	
		side chain - halogenation and oxidation - methods of formation and Chemical reactions of alkylbenzenes		of aromatic compounds		
	5	Biphenyl, naphthalene and anthracene - synthesis of 3-nitrotoluene, 4- bromonitro benzene, 4- bromoacetophenone, 3- (4-nitrophenyl)prop-1- ene, 3-nitrostyrene	2	Understand about the synthesis of benzene compounds	Question answer session and lecture	
II	p-block e	lements – Boron and Carbo	on family	(Group 13 and 14)		
	1	General characteristics of elements of Group 13 - extraction of boron physical and chemical properties of boron	3	Know about characteristic, extraction and properties of boron	Lecture with power point presentation	Evaluation through Multiple choice questions,
	2	Compounds of boron - borax, boric acid, diborane, boron nitride- extraction of Al -physical and chemical properties - uses	3	Know the compounds of boron along with uses	Lecture and illustration	short test, quiz Formative assessment I
	3	Compounds of aluminium -Al ₂ O ₃ , AlCl ₃ , alums - alloys of Aluminium. General characteristics of elements of Group 14 - allotropic forms of carbon - structure of graphite, diamond and fullerene	3	Understand clearly about the Allotropic forms of carbon	Lecture and discussion	
	4	Chemistry of charcoal- chemistry of oxides of carbon-preparation of silicon - physical and chemical properties of Si - uses -oxides of silicon - structures of silicates - chemistry of silicones	2	Study about chemistry of silicones	Lecture and discussion	

	5	Manufacture of glass - types of glasses - ceramics - extraction of lead - physical and chemical properties - uses - lead pigments	2	Understand about the extraction, properties and uses of lead	Question answer session and lecture	
III	p-block e	elements – Nitrogen and Ox	ygen fami	ly (group 15 and 16)		
	1	General characteristics of elements of group 15 - Preparation of nitrogen - physical and chemical properties of nitrogen – uses	2	Know about Characteristic, extraction, properties and uses of nitrogen	Lecture and illustration	Evaluation through Multiple choice questions, short test, quiz
	2	Chemistry of nitrogen - hydrazine, hydroxylamine, hydrazoic acid, nitric acid - nitrogen cycle. Preparation, physical and chemical properties and uses of phosphorus	3	Learn about chemistry of nitrogen compounds	Lecture and illustration	Formative assessment II
	3	Chemistry of PH ₃ , PCl ₃ , PCl ₅ , POCl ₃ , P ₂ O ₅ and oxyacids of phosphorous - phosphate fertilizers - super phosphate of lime- triple super phosphate	1	Analyse the effects of phosphate fertilizers and super phosphate	Lecture	
	4	Oxides of nitrogen and Phosphorous - oxoacids of nitrogen and phosphorus. Anomalous behavior of oxygen - allotropy of oxygen and phosphorous	3	Know about allotropy of oxygen and its anomalous behaviour	Lecture with power point Illustration	
	5	Structure of ozone, oxides - peroxides, suboxides, basic oxides, amphoteric oxides, acidic oxides, neutral oxides - oxides of sulphur - oxoacids of sulphur - sulfuryl compounds - extraction - uses - selenium and tellurium	3	Understand about oxides and oxoacids of sulphur	Question answer session and lecture	

IV	Colloids					
	1	Definition -classifications - lyophobic and lyophilic colloids - differences. True solutions, colloidal solutions and suspension - definition and characteristics	3	Know about true, colloidal solutions and suspensions	Lecture	Evaluation through Multiple choice questions, short test, quiz
	2	Preparation of colloidal solutions - dispersion methods and condensation methods- purification of colloidal solutions- optical properties-Tyndall effect	3	Understand about different methods of colloidal solutions	Lecture and discussion	Formative assessment II
	3	Kinetic properties - Brownian motion- electrical properties- Helmholtz and diffuse double layers - electro kinetic or zeta potential - electrophoresis - applications -coagulation	3	Acquire knowledge about kinetic and electric properties	Lecture	
	4	Methods- Hardy Schultz law -Hofmeister series - protective colloids - protective action - gold number -applications	2	Know about methods of colloids	Lecture and discussion	
	5	Emulsions - classification, preparation, Gels - preparation - properties - thixotropy -syneresis- imbibitions - application of colloids	1	Study about emulsions, gels and applications of colloids.	Lecture with power point presentation	
V	Photo Ch	emistry				
	1	Introduction-comparison of thermal and photochemical reactions Laws of photochemistry - Beer-Lamberts law- Grothus-Drapper law - Stark-Einstein law of photochemical equivalence	3	Know about the Laws of photochemistry	Lecture and discussion	Evaluation through Multiple choice questions, short test, quiz Formative assessment I

2	Quantum efficiency - determination of quantum efficiency - chemical actinometry -consequence of light absorption - Jablonski diagram	3	Gather knowledge regarding quantum efficiency and Jablonski diagram	Lecture	
3	Radiative and non- radiative transitions- primary and secondary processes-fluoresence- phosphoresence – photochemical reactions	1	Understand about primary and secondary processes	Lecture and Illustration	
4	Photochemical rate law- kinetics of photochemical combination of H ₂ and Cl ₂ , H ₂ and Br ₂ and decomposition of HI – energy transfer in photochemical reactions	2	Learn about kinetics of photochemical reactions.	Lecture and Discussion	
5	Photosensitization - photosynthesis in plants – chemiluminescence - thermoluminescence- bioluminescence. Lasers- principle-types- applications.	2	Know about different types of lasers	Lecture wit power point presentation	

Course Instructor: Dr. G. Leema Rose

Semester - III Major Elective I a– Pharmaceutical Chemistry Course Code: CC2032

Hours / Week	Credits	Total hours	Marks
4	3	60	100

Objectives:

- To understand the classification, sources, design and action of common drugs.
- To impart knowledge on various diseases and treatment.

Course Outcome

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO-1	to understand the characteristics, classification and sources of drugs	PSO-1	U
CO-2	interpret the chemical structure and pharmacological activities of drugs	PSO-3	Е
CO-3	compare the action of various drugs	PSO-2	An
CO-4	design common drugs and interpret their therapeutic uses	PSO-5	Ар
CO-5	identify common diseases, their causes and treatment	PSO-2	An

Unit	Module	Topics	Hours	Learning	Pedagogy	Assessment/
				Outcome		Evaluation
Ι	Classific	ation and sources of drugs				•
	1	Important terminologies used in pharmaceutical chemistry - pharmacy - pharmacology - pharmacodynamics - pharmacokinetics- pharmacophore-metabolites- antimetabolites-actionmycetes- chemotherapy-pharmacopoeia- pharmacognosy- pharmacotherapeutics	3	Gain knowledge about the various terminologies used in pharmaceutical chemistry	Lecture	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
	2	Classification of drugs -drugs acting on central and peripheral nervous system- chemotherapeutic drugs - pharmacodynamic agents	2	Understand the action of drugs and classify them	Lecture	

	3	Drugs for metabolic diseases and endocrine function. Nature and sources of drugs - various	2	Know the sources, nature,	Lecture with power point	
		sources of drugs		functions of drugs	presentation	
	4	Drug development -pre-clinical and clinical trials	3	Understand the various steps involved in drug development	Lecture	
	5	Patenting and legal issues - chemical and process development	2	Gain knowledge about the importance of patenting	Lecture with power point presentation	
II	Drug De	sign and chemicals in medicine				
	1	Introduction- physical and chemical properties of drugs	3	Recall the physical and chemical properties of drugs	Question answer session	Evaluation through Multiple choice questions,
	2	Designing of drugs procedures followed lead component methods of lead discovery lead modification	3	Understand the steps involved in designing of drugs	Lecture	short test, quiz Formative assessment I
	3	Prodrugs types-applications drawbacks soft drug advantages. Physical and chemical factors of drug design	2	Explain about prodrugs	Lecture with group discussion	
	4.	Chemical structure and pharmacological activities of drugs	2	Draw the structure of various drugs	Group discussion	
	5.	Preparation, properties and uses of alum-aluminium hydroxide gel -phosphoric acid -arsenous anhydride-ferrous fumarate – ferric ammonium citrate - mercury with chalk (Grew powder)	2	Understand the methods of preparing drugs and recall their properties and uses	Lecture method	
III	Drug Ac	tion and Metabolism of drugs				
	1	General principles - assay of drugs - biological assay	2	Get idea about general principles and assay of drugs	Seminar	Evaluation through Multiple choice questions,

	2	Absorption - drug distribution - drug metabolism Biological role of salts of sodium, potassium, calcium, zinc and iodine. Agonist and antagonist. Receptor forces - types - theories	2	Predict the mechanism of drug absorption Recognize the role of salts in drugs	Lecture and power point presentation Lecture	short test, quiz Formative assessment II
	4	Mechanism of drug action - actions at extra cellular site - actions at cellular site. Mechanism of different types of drug action	2	Write the mechanisms of drug action	Lecture	
	5	Time response relationships - dose response relationship - biotransformation of drugs. Metabolism of drugs - oxidation -reduction -hydrolysis - conjugation	3	Know the metabolism of drugs	Lecture	
IV						
	1	Antibacterial drugs -preparation and therapeutic uses of sulpha drugs - sulphanilamide - sulphadiazine - sulphathiazole- sulphafurazole -prontosil. Mechanism of action of sulpha drugs	3	Know about antibacterial drugs	Lecture and Seminar	Evaluation through Multiple choice questions, short test, quiz
	2	Antibiotics - classification based on chemical structure and biological action - structure and therapeutic uses of chloramphenicol - Penicillin - Streptomycin - Tetracyclin - Erythromycin	3	Know the importance of antibiotics	Lecture and group discussion with power point	Formative assessment II
	3	Antiseptics and Disinfectant- distinction between antiseptics and disinfectants. Disinfectant- definition - examples - phenol -preparation and uses -chloroxylenol- structure - properties and uses. Antiseptics- Chloramine T - preparation and uses -crystal violet -structure and uses	3	Differentiate and know the importance of antiseptics and disinfectants.	Lecture	

V	5 Commor 1	Antipyretics - definition - examples - aspirin -methyl salicylate -paracetamol, phenacetin - preparation and therapeutic uses diseases and treatment Insect borne diseases - malaria and filariasis. Airborne diseases - diphtheria-influenza and TB. Waterborne diseases - cholera and typhoid	3	Understand the importance of antipyretics Know about insects borne diseases	Lecture Lecture and discussion	Evaluation through Multiple choice questions,
	2	Blood pressure - definition- factors affecting blood pressure- systolic pressure - diastolic pressure - pulse pressure - blood pressure levels. Hyper tension- types - control antihypertensive agents. Hypotension - measurement	3	Understand the reasons and methods of treating blood pressure	Lecture with power point presentation	short test, quiz Formative assessment I
	3	Anaemia - symptoms and causes - types - antianaemic drugs - types	3	Realize the causes and symptoms of anaemia	Lecture and group discussion	
	4	Cardio-vascular drugs cardiac- glycosides- cardiovascular action - antiarrhythmic drugs- functions -therapeutic uses	2	Gain knowledge about cardio - vascular drugs	Lecture with power point presentation	
	5	Vasodilators orvasopressor - definition- examples - antianginal drugs -example. Cancer -causes -antineoplastic agents-cis-platin-vinblastine and mustine	2	Explain the importance of vasodilators and antineoplastic drugs	Lecture	

Course Instructor: Ms. L. Deva Vijila

Allied Chemistry for Physics Major Semester III Inorganic and Physical Chemistry Course Code: CA2031

Hours / week	Credits	Total hours	Marks
4	4	60	100

Objectives

- 1. To acquire knowledge on atomic structure and bonding
- 2. To know about metallurgy and the structure of solids
- 3. To understand the principles of nuclear reactions

Course Outcome

СО	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO-1	remember the structure and bonding in atoms and molecules	PSO-1	R
CO-2	know about different types of bonding	PSO-2	Y
CO-2	understand the metallurgical processes and the methods of purification of metals	PSO-6	А
CO-3	understand the concepts of solid state chemistry and nuclear chemistry	PSO-1	U

Unit	Module	Module Topics Hours Learning Outcome P		Pedagogy	Assessment/			
						Evaluation		
Ι	Atomic Structure							
	1	Dual nature of electron - de-Broglie equation	2	Acquire knowledge on Dual nature of electron and de- Broglie equation	Lecture and power point presentation	Evaluation through Multiple choice		
	2	Davisson and Germer experiment	1	Learn Davisson and Germer experiment	Lecture and power point presentation	questions, short test, quiz		
	3	Heisenberg's uncertainty principle and its significance.	1	Understand Heisenberg's uncertainty principle and its significance	Lecture and power point presentation	Formative assessment I		
	4	Compton effect - Schrodinger's wave equation and its significance	1	Understand Schrodinger's wave equation	Lecture and power point presentation			
	5	eigen values and eigen functions	1	Distinguish eigen values and eigen functions	Lecture and power point presentation			
	6	quantum numbers and	2	Understand the	Lecture and			
----	---	--------------------------------	---	-----------------------------	--------------	--------------		
		their significance		various quantum	power point			
				numbers	presentation			
	7	Atomic orbitals -	1	Differentiate between	Lecture and			
		shapes - significance -		orbit and orbital	power point			
		difference between			presentation			
		orbit and orbital						
	8	Rules for filling up of	2	Know about different	Lecture and			
		orbitals - Pauli's		principle Governing	power point			
		exclusion principle -		the filling up of	presentation			
		Aufbau principle -		orbitals				
		Hund's rule						
	9	Electronic	1	Know about the	Lecture and			
		configuration of		filling up of atomic	power point			
		elements		orbital	presentation			
II	C	hemical bonding						
	1	Ionic bond, formation	1	Know about ionic	Lecture and	Evaluation		
		of ionic bond, general		bond and its	power point	through		
		characteristics of ionic		characteristics	presentation	Multiple		
		compounds				choice		
	2	Lattice energy, Born-	1	Understand Lattice	Lecture and	questions,		
		Haber cycle and its		energy	power point	short test,		
		applications			presentation	quiz		
	3	Covalent bond,	1	Gain knowledge	Lecture and			
		formation of covalent		about covalent bond	power point	Formative		
		bond with examples,			presentation	assessment I		
		general characteristics						
		of covalent compounds						
	4	Ionic character in	1	Acquire knowledge	Lecture and			
		covalent compounds,		about Ionic character	power point			
		M.O. theory			presentation			
	5	Fajan's rule.	1	Understand Fajan's	Lecture and			
		percentage of ionic		rule	power point			
		character and bond			presentation			
		moment						
	6	bonding, antibonding	1	Explicate the	Lecture and			
		and non-bonding		difference between	power point			
		molecular orbitals		bonding, antibonding	presentation			
				and non-bonding				
		MO I' CTT	2	molecular orbitals	T / 1			
	7	M.O diagram of H_2 ,	2	Draw the M.O	Lecture and			
		N_2 , O_2 and F_2 , bond		diagram of H_2 , $N_{2,}$	power point			
	0	order	1	O_2 and F_2	presentation			
	8	Coordinate bond -	1	Understand	Lecture and			
		formation of		Coordinate bond	power point			
		coordinate bond with		formation	presentation			
		examples						

	9	Metallic bond, band theory, conductors, insulators and semiconductors	1	Explicate the difference between conductors, insulators and semiconductors	Lecture and power point presentation	
	10	Hydrogen bonding types - inter and intramolecular, effect of hydrogen bonding	2	Understand Hydrogen bonding and its effect	Lecture and power point presentation	_
III	Metallu	rgy and Alloys				
	1	Difference between minerals and ores, metallurgical processes, gravity separation and magnetic separation	3	Differentiate minerals and ores	Lecture and power point presentation	Evaluation through Multiple choice questions, short test,
	2	Froth floatation process, roasting, calcination, smelting	1	Understand various ore dressing methods	Lecture and power point presentation	quiz Formative
	3	purification of metals, electrolytic refining and zone refining	1	Understand various purification methods	Lecture and power point presentation	assessment II
	4	Van - Arkel de-Boer process, Kroll's process. Extraction and uses of Ti ,V, W and Mo	2	Understand the extraction of metals	Lecture and discussion	_
	5	Purpose of making alloys, types of alloys - ferrous alloys and non- ferrous alloys and preparation of alloys	2	Gain knowledge on alloys.	Lecture and power point presentation	
	6	Heat treatment of alloys, composition and uses of bronze and german silver	1	Understand the types of alloys.	Lecture and discussion	_
	7	Nichrome, monel metal, stainless steel, gun metal and bell metal	2	Gain knowledge on types of metals.	Lecture and discussion	
IV	Solie	d State Chemistry		1	1	1
	1	Amorphous and crystalline solids, difference between amorphous and crystalline solids	2	Differentiate amorphous and crystalline solids	Lecture and power point presentation	Evaluation through Multiple choice questions, short test,

	2	Isotropy and	2	Understand various	Lecture and	quiz
	۷	anisotropy, elements	2	symmetry elements	power point	Yuiz
		of symmetry, plane of		symmetry elements	presentation	Formative
					presentation	
		symmetry, axis of				assessment
		symmetry, centre of				II
		symmetry and law of				
		rational indices				_
	3	Miller indices and	1	Gain knowledge on	Lecture and	
		elements of symmetry		miller indices	power point	
		of a cubic crystal			presentation	
	4	Point groups and seven	2	Understand basic	Lecture and	
		basic crystal system,		crystal system.	power point	
		Bravais lattice			presentation	
	5	Bragg's equation-	3	Gain knowledge on	Lecture and	
		derivation,		determination of	power point	
		determination of		crystal structure	presentation	
		crystal structure by		-	1	
		powder method				
	6	Structure of crystals -	2	Understand the	Lecture and	-
	Ŭ	diamond, graphite and	-	structure of graphite	power point	
		fullerene.		and diamond	presentation	
		Imperfections in a			presentation	
		crystal - Point defect,				
		Schottky defect,				
		Frenkel defect, metal				
		excess defect, metal				
		deficiency defect				
V	Nuc	lear Chemistry				
•		-	-			
	1	Nuclear forces, nuclear	2	Understand packing	Lecture and	Evaluation
		size, atomic mass unit,		fraction and binding	power point	through
		N/P ratio, packing		energy	presentation	Multiple
		fraction, mass defect				choice
		and binding energy				questions,
	2	Radioactivity - α , β , γ	1	Knowledge on α , β	Lecture and	short test,
		radiations and		and γ radiations	power point	quiz
		properties, Soddy's			presentation	
		group displacement				Formative
		law				assessment I
	3	Natural radioactivity -	2	Know the detection	Lecture and	1
		detection and	-	and measurement of	power point	
		measurement of		radioactivity	presentation	
		radioactivity by		radioaotivity	Presentation	
		Geiger-Muller method				
	4	Rate of radioactive	1	Gain knowledge on	Lecture and	-
	4		1	Gain knowledge on		
		disintegration, decay		decay constant and	power point	
		constant, half-life		half life	presentation	
		period and average life				
		period				
1						

5	Nuclear reactions - nuclear fission, principle of atom bomb, nuclear reactor, radioactive hazards and disposal of radioactive waste from nuclear reactors	2	Understand the types of nuclear reactions and nuclear hazards	Lecture and power point presentation	
6	Nuclear fusion - principle of hydrogen bomb and stellar energy	1	Understand hydrogen bomb	Lecture and power point presentation	
7	Principle and working of cyclotron. Applications of radio activity	2	Gain knowledge on cyclotron	Lecture and power point presentation	
8	Radioactive tracers in agriculture, medicine and industry. Radiocarbon dating	1	Gain knowledge on various applications of radioactivity	Lecture and power point presentation	

Course Instructor: Dr. M. Anitha Malbi

Semester - IV Core IV: General Chemistry IV Course Code: CC2041

Hours / week	Credits	Total hours	Marks
4	4	60	100

Objectives

- To study the preparation and chemical reactions of alkyl and aryl halides, alcohols, phenols, ethers and epoxides with mechanism
- To know the chemistry of halogens and noble gases.
- To understand the basics of first and second law of thermodynamics and related relationship.

Course outcome

COs	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	know the mechanism of important name reactions	PSO - 1	U
CO - 2	apply the reaction mechanisms in the synthesis of components used in industrial and medicinal fields	PSO - 2	An
CO - 3	evaluate the characteristics of halogens and noble gases	PSO - 3	Е
CO - 4	classify the non-aqueous solvents and know the theories of acids and bases	PSO - 3	E
CO - 5	list out the applications of first and second law of thermodynamics	PSO - 3	R

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Торіс	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Haloalka	nes and Haloarenes				
	1	Classification of alkyl halides, methods of formation from alcohols, alkanes, alkenes. Allylic/ benzylic bromination and chlorination	2	Understand the preparation and properties of alkyl halides	Lecture and discussion	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
	2	Hundiecker reaction, Finkelstein reaction and Swart's reaction	2	Know about the mechanisms of the reactions	Lecture and discussion	

	3	Nucleophilic substitution reactions and its mechanisms. S_N2 and S_N1 reactions with energy profile diagrams and its difference	2	Gain knowledge about the nucleophilic substitution reactions	Lecture	
	4	Dehydrohalogenation with mechanism, Hoffmann and Saytzeff's rules, Reaction with metals, Wurtz reaction and formation of Grignard reagent	2	Understand the mechanisms of named reactions and formation of Grignard reagent	Lecture	
	5	Methods of formation of aryl halides - nucleophilc substitution reactions of aryl halides - addition-elimination and the elimination- addition mechanisms	2	Understand the preparation and properties of alkynes	Question answer session and lecture	
	6	Electrophilic substitution - Ullmann reaction and Wurtz-Fittig reaction. Relative reactivities of alkyl, allyl, vinyl and aryl halides	1	Study the synthesis of compounds	Lecture and discussion	
	7	Synthesis and uses of DDT and BHC	1	Know the synthesis and uses of some compounds	Lecture and discussion	
II		, Phenols and Ethers	2	17 1	Т •.•	
	1	Preparation of alcohols through reduction, hydroboration, hydration, oxymercuration and Grignard reaction	2	Know about preparation and reactions of alcohols	Lecture with illustration	Evaluation through Multiple choice questions, short test, quiz Formative assessment I

	2	Reactions of alcohol with metals, esterification with mechanism, oxidation, dehydration, conversion to alkyl halides	2	Understand the reactions of alcohol with metals	Lecture with illustration	
	3	Preparation of Phenols its acidity and relative acid strength of substituted phenols	2	Understand clearly about the reactions and synthesis of compounds	Lecture and discussion	
	4	Reactions of phenols - esterification, oxidation, Kolbe's, Reimer-Tiemann, Gattermann, electrophilic substitution reactions	2	Study the reactions of phenols	Lecture and discussion	
	5	Dihydric and trihydric phenols- preparation and properties	2	Know about the preparation and properties of dihydric and trihydric phenols	Lecture and illustration	
	6	Preparation of ethers, reactions with epoxide. Synthesis of aspirin, 3 and 4-nitro phenol nd t- butylmethyl ether	2	Learn the preparation of ethers and its reactions with epoxide	Lecture and discussion	
III	Halogen	family and Noble gase	S			
	1.	General characteristics of halogen with reference of electro negativity, electron affinity, oxidation states, and oxidizing power	2	Understand clearly about the general characteristics of halogen	Lecture with illustration	Evaluation through Multiple choice questions, short test, quiz Formative assessment II
	2.	Peculiarities of fluorine its hydrides and oxides oxo acids of halogens	2	Learn about peculiarities of fluorine compounds	Lecture with illustration	

	3.	Interhalogen	2	Analyse the	Lecture	
	5.	compounds,	2	properties and	Lecture	
		polyhalide ions,		structure of		
		pseudohalogens,		interhalogen		
		preparation,		compounds		
				compounds		
		properties and				
		structure of				
		interhalogen				
		compounds	-	TT 1		
	4.	Inert gases, position	2	Know the	Lecture with	
		in the periodic table,		characteristics,	power point	
		isolation from		structure and	presentation	
		atmosphere, General		shape of Inert		
		characteristics,		gases		
		Structure and shape				
		of xenon compounds				
		$XeF_{2}, XeF_{4}, XeF_{6},$				
		$XeOF_{2}$, $XeOF_{4}$ its				
		uses of noble gases				
	5.	Protic & Aprotic	2	Learn about protic	Lecture and	
		solvents, non-		& aprotic solvents	discussion	
		aqueous solvents,		its classification		
		Classification of		and general		
		solvents, General		properties		
		properties of ionizing				
		solvents-chemical				
		reactions. Liquid				
		ammonia and liquid				
		SO ₂ as solvents				
	6.	Acid Base	2	Know the various	Lecture and	
		Chemistry, Theories		theories of acids	discussion	
		of acids and bases,		and bases		
		Arrhenius, Bronsted,				
		Lowry theory proton				
		donor - acceptor				
		system. HSAB				
		principle and				
		Usanovich concept				
IV	First Lav	w of Thermodynamics	and Hess'	s law		
<u> </u>	1.	Chemical	2	Know the	Lecture	Evaluation through
	1.	thermodynamics,	-	importance of		Multiple choice
		importance of		thermodynamics		questions, short test,
		thermodynamics,		ulermouynamiles		quiz
						Yuiz
		basic terms- system,				Formative assessment II
		boundary and				ronnative assessment II
		surroundings. Types				
		of systems - open,				
		closed and isolated				

2.	Types of processes - isothermal, adiabatic, isobaric and isochoric, reversible and irreversible process. Difference between reversible and irreversible process. First law of thermodynamics- mathematical form	2	Understand the different types of processes	Lecture and discussion
3.	Heat capacity of a system, heat capacity at constant volume (Cv) and heat capacity at constant pressure (Cp), relationship between Cp and Cv. Calculations of w, q, dE and dH for the reversible expansion of ideal gases under isothermal and adiabatic conditions	2	Acquire knowledge heat capacity of a system	Lecture
4.	Joule- Thomson effect, derivation of Joule- Thomson coefficient for ideal gases and real gases, inversion temperatures	2	Derive Joule- Thomson coefficient	Lecture and discussion
5.	Hess's law and its applications. Variation of enthalpy change of reaction with temperature (Kirchoff's equation)	2	Understand the variation of enthalpy	Lecture
6.	Second law of thermodynamics, Need for second law, statements of Second law, Carnot theorem, Carnot cycle, Efficiency of heat engine	2	Study the need for second law of thermodynamics	Lecture and power point presentation

V	Thermodynamics – II								
	1.	Third law of thermodynamics, concept of entropy, State function, entropy change in isothermal expansion of ideal gas, entropy change in reversible and irreversible process	2	Know about the Third law of thermodynamics and the concept of entropy	Lecture, Discussion	Evaluation through Multiple choice questions, short test, quiz Formative assessment I			
	2.	Entropy change accompanying by change of phase, calculation of entropy change of an ideal gas with changes in pressure, volume and temperature, Entropy of mixing	2	Gather knowledge on entropy change accompanying change of phase	Lecture				
	3.	Physical significance of entropy. Gibbs free energy , Work function, Variation of free energy change with temperature and pressure , Criteria for spontaneity , Gibbs Helmholtz equation	2	Understand the physical significance of entropy	Lecture, Illustration				
	4	Partial molar properties, Clapeyron Clausius equation and its applications. Van't Hoff reaction isotherm and its significance	2	Learn Clapeyron Clausius equation, Van't Hoff reaction and its applications.	Lecture, Discussion				
	5	Van't Hoff isochore and significance. Fugacity, concept, determination of fugacity of real gases	2	Gain knowledge on Van't Hoff isochore and fugacity	Lecture				

6	Variation of fugacity with temperature and pressure. Physical significance of fugacity. Activity, activity coefficient Nernst Heat theorem and its applications. Zeroth law of thermodynamics	2	Understand the variation of fugacity with temperature and pressure	Lecture, Discussion	
---	--	---	--	------------------------	--

Course Instructor: Sr. K. Francy

Semester – IV Elective II a - Green Chemistry Course Code: CC2042

Hours / week	Credits	Total hours	Marks	
4	3	60	100	

Objectives

- 1. To know the principles of green chemistry.
- 2. To study the important techniques and green synthesis of compounds.
- 3. To study the concept of atom economy in chemical synthesis.

Course outcome

COs	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO - 1	know the principles of green chemistry	PSO - 1	R
CO - 2	design green synthesis	PSO - 5	С
CO - 3	interpret green method for organic synthesis	PSO - 3	E
CO - 4	synthesize various compounds by microwave and ultrasound assisted methods	PSO - 4	С
CO - 5	analyze the important techniques and directions in practicing green chemistry	PSO - 2	An
CO - 6	identify the importance of Green chemistry in day to day life	PSO - 8	Ар

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Introduc	tion to green chemistry				
	1	Definition, need for green chemistry and scope of green chemistry	2	Know the need for green chemistry	Lecture with power point presentation and group discussion	Evaluation through Multiple choice questions, short test, quiz
	2	Concept of atom economy, yield, mass intensity and atom economy. Calculation of atom economy, mass intensity, mass productivity and carbon efficiency	4	Calculate the atom economy, mass intensity, mass productivity and carbon efficiency	Seminar	Formative assessment I
	3	Different types of reactions and atom economy, addition, substitution, elimination and rearrangements	2	Differentiate the types of reactions	Illustration and seminar	

	4		2	TT 1 1 1	T / •.1	
	4	Concept of selectivity,	2	Understand the	Lecture with	
		enantioselectivity and		concept of	power point	
		chemoselectivity		selectivity	presentation	
	5	Regioselectivity and	2	Know the	Lecture and	
		diastereoselectivity		different types	group discussion	
TT	Constant			of selectivity		
II	Green so	Divent				
	1	Super critical fluids, Introduction, extraction	4	Learn the extraction and	Question answer session	Evaluation through Multiple choice
		of super critical fluids, solvents of super critical		advantages of super critical		questions, short test, quiz
		fluid, advantages and		fluids		
		applications Carbon				Formative
		dioxide as a super				assessment I
		critical fluid				
	2	Features of technique	4	Understand the	Lecture	
		for using super critical		features of		
		carbon dioxide,		technique for		
		advantages and		using super		
		application. Chemical		critical carbon		
		reaction in supercritical		dioxide		
		water and Near, Critical				
		Water (NCW), Region				
	3	Extraction natural	4	Know the	Lecture with	
		products, dry cleaning,		process of	power point	
		supercritical		extraction of	presentation and	
		polymerization,		natural	group discussion	
		hydrogenation and		products and		
		hydroformylation.		applications		
		Ionic liquid as green				
		solvent: Introduction,				
		synthesis of ionic				
		liquids, acidic ionic				
		liquid and neutral ionic				
		liquids, applications in				
		organic synthesis				
III	Green ca	atalyst				
	1	Catalysis over view,	3	Understand the	Seminar	Evaluation through
	T	acid catalyst, basic	5	different types	Somma	Multiple choice
		catalyst, oxidation		of catalyst		questions, short
		catalyst, polymer		or cataryst		test, quiz
		supported catalyst,				1001, Yuiz
		photosensitized super				Formative
		acid catalyst and Tetra				assessment II
		Amido Macrocylic				assessment II
		Ligana (17 WiL) catalyst				
		Ligand (TAML) catalyst				

	2	Dissocializet mismobiol	Λ	Vnow the	Aggionment	
	2	Biocatalyst, microbial	4	Know the	Assignment	
		oxidation, microbial		action of		
		reduction, enzyme		Biocatalyst		
		catalyzed hydrolytic				
		process, per fluorinated				
		catalyst and modified				
		biocatalyst				
	3	Development of	5	Compare the	Lecture with	
		mesoporous supports by		Development	power point	
		liquid crystal		of mesoporous	presentation and	
		templating, neutral		supports by	group discussion	
		templating methods,		various		
		heterogeneous catalyst,		methods		
		solid supported catalyst				
IV	Green sy			1		1
	1	Green synthesis of the	3	Synthesize	Illustration and	Evaluation through
		following compounds,		different	seminar	Multiple choice
		Adipic acid, Catechol,		compounds by		questions, short
		Benzoyl bromide,		Green		test, quiz
		Acetaldehyde, Citral,		synthesis		
		Ibruprofen and		method		Formative
		Paracetamol				assessment II
	2	Microwave assisted	3	Learn the	Lecture and	
		reactions in water,		different	group discussion	
		Hoffmann Elimination,		microwave		
		Hydrolysis of benzyl		assisted		
		chloride and methyl		reactions in		
		benzoate, oxidation of		water		
		toluene and alcohols				
	3	Microwave assisted	3	Understand	Lecture with	
		reactions in organic		the different	power point	
		solvents, Esterification,		microwave	presentation	
		Fries rearrangement,		assisted		
		Clasien Rearrangement,		reactions in		
		Diels - Alder Reaction		organic		
		and Decarboxylation		solvents		
	4	Ultra sound assisted	3	Learn the	Lecture and	
		reactions, Esterification,		different ultra	illustration	
		Saponification,		sound assisted		
		alkylation, oxidation,		reactions		
		reduction, coupling				
		reactions and Cannizaro				
		reactions				
V	Green re	eactions involving basic pr	inciple of g	reen chemistry		
	1	Twelve principles of	4	Know the	Lecture,	Evaluation through
		green chemistry - choice		twelve	Quiz	Multiple choice
		of starting materials -		principles of	-	questions, short
		biomimitic,		green		test, quiz
		multifunctional reagents		chemistry		-
		materials reagents.		-		Formative
	1	0		1	1	1

2	Combinatorial green chemistry, Green Chemistry in sustainable developments	4	Understand the importance of Green Chemistry in sustainable developments	Lecture with power point presentation	assessment I
3	Importance of Green chemistry in day to day life, versatile bleaching agents and analgesic drugs	4	Learn the Importance of Green chemistry in day to day life	Lecture and group discussion	

Course Instructor: Dr. S. Ajith Sinthuja

Allied Chemistry for Physics Major Semester IV Physical Chemistry Course Code: CA2032

Hours / week	Credits	Total hours	Marks
4	4	60	100

Objectives

- 1. To understand the basic concepts of thermodynamics and nano chemistry
- 2. To enable them to apply concepts related to chemistry in their careers
- 3. To know the basic principles of kinetics and photochemistry

Course Outcome

COs	Upon completion of this course, the students will be able to:	PSO addressed	Cognitive level
CO-1	remember the theories and the factors influencing rate of reaction	PSO-1	R
CO-2	understand the laws and theories that govern photochemistry	PSO-1	U
CO-3	apply the principles of physical properties for structural determination	PSO-6	А
CO-4	understand the different laws of thermodynamics	PSO-1	U
CO-5	analyse the importance of nano chemistry in various fields	PSO-2	Y

Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Thermo	lynamics		•		
	1	Thermodynamics - importance - basic terms - system, boundary and surroundings - types of systems - open - closed - isolated - homogeneous and heterogeneous	2	Know about the basics in thermodynamics	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Types of processes - isothermal, adiabatic, isobaric, isochoric, reversible and irreversible process- difference between reversible and irreversible process - state and path functions	2	Differentiate the different processes	Lecture with power point presentation	Formative assessment I

	3	First law of	2	Derive the	Lecture and	
		thermodynamics -		expressions for	power point	
		different statements -		heat capacities	presentation	
		mathematical derivation -				
		heat capacity of a system -				
		heat capacity at constant				
		volume (C_v) - heat				
		capacity at constant				
		pressure (C_p) -				
		thermodynamic				
		relationship between C _p				
	4	and C_v	2	Learn about Joule	Lecture and	
	4	Variation of enthalpy of a	Z	Thomson effect	seminar	
		reaction with temperature - Kirchoff's equation,		Thomson effect	semmai	
		Joule Thomson effect				
	5	Expression for Joule	2	Know to derive	Lecture with	
	5	Thomson coefficient for	-	expression for	power point	
		an ideal gas and		Joule Thomson	presentation	
		vanderwaal's gas -		coefficient for an	presentation	
		derivation - inversion		ideal gas and		
		temperature - significance		vanderwaal's gas		
	6	Second law of	2	Learn Carnot's	Lecture with	
		thermodynamics - need		cycle	power point	
		for second law of			presentation	
		thermodynamics -				
		different statements -				
		Carnot's cycle				
II	Chemica	l kinetics				
	1	Rate of reaction -	3	Know about	Question	Evaluation
		expression of rate - factors		reaction rate and	answer	through
		influencing rate of		factors	session	Multiple
		reaction - order and		influencing rate of		choice
		molecularity of a reaction		reaction		questions,
		- definition and examples				short test,
	2	Difference between order	3	Differentiate	Lecture	quiz
		and molecularity - zero,		order and		
		first and second order		molecularity		Formative
		reactions - examples				assessment I
		derivation of rate constant				
		and half-life period				
	3	Methods of determining	3	Learn about	Lecture with	
	5	order of reaction - use of	5	different methods	power point	
		differential - integral -		of determining	presentation	
		half-life method and		order of reaction	and	
		Ostwald's methods			group	
					discussion	

	4	Arrhenius theory -concept of activation energy - effect of catalyst - calculation of energy of activation. Theories of reaction rates - collision theory of bimolecular gaseous reactions - activated complex theory	3	Know about activation energy	Lecture with power point presentation	
III	Physical	properties and structure de	eterminati	on		
	1	Dipole moment - definition and expression for dipole moment - applications - molecular geometry - cis-trans isomerism and disubstituted benzene derivatives	2	Know about dipole moment and isomerism	Seminar and power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Dia, para and ferro magnetism - magnetic susceptibility and magnetic moment - measurement using Guoy balance - application of magnetic properties	2	Learn about dia , para and ferro magnetism	Lecture and power point presentation	Formative assessment II
	3	Thermogravimetric analysis - principles - applications. Chromatography - classification	2	Know about thermogravimetric analysis	Lecture and power point presentation	
	4	Column chromatography - principle - experimental techniques - factors affecting column efficiency and applications	2	Gather knowledge regarding column chromatography	Power point presentation with videos	
	5	TLC principle - experimental techniques - advantages - limitations - applications. GC - principle - experimental techniques - applications	2	Distinguish between TLC and GC	Illustration, seminar and power point presentation	
	6	HPLC - principle and experimental techniques	2	Know about the principles of HPLC	Lecture and power point presentation	

IV	Photoch	emistry				
	1	Importance of photochemistry - difference between thermal and photochemical reactions - laws of photo chemistry - Beer-Lambert's Law - Grother's - Drapers law - Stark-Einstein's law	3	Understand about photo chemical laws.	Power point presentation with videos	Evaluation through Multiple choice questions, short test, quiz Formative
	2	Quantum efficiency - electronic excitations - singlet and triplet states - Jablonski diagram - internal conversion - intersystem crossing	3	Know about electronic excitations	Lecture	assessment II
	3	Fluorescence - phosphorescence - difference between fluorescence and phosphorescence	2	Differentiate between fluorescence and phosphorescence	Lecture	
	4	Types of photo chemical reactions based on quantum efficiency ($\phi =$ 1, $\phi < 1$ and $\phi > 1$) - primary and secondary process of photo chemical reaction - photo chemical rate law	2	Learn the types of photo chemical reactions	Lecture and power point presentation	
	5	Kinetics of photo chemical reactions - combination of H ₂ and Cl ₂ - decomposition of HI- photosensitization - photosensitizers - Chemiluminescence – bioluminescence. Lazers - principle - uses	2	Understand the kinetics of photo chemical reactions	Lecture and power point presentation	
V	Chemist	ry of Nanomaterials			1	
	1	Nanotechnology - introduction, fundamental principles - nano particles - size - nano particles of metals - semiconductors and oxides	3	Understand the fundamental principles of nanochemistry	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz

2	Synthesis of nano sized compounds - reduction methods by sodium citrate and borohydride - Sol-gel method and chemical vapour deposition method - properties - optical and electrical	3	Gather knowledge regarding synthesis of nano particles	Lecture with videos	Formative assessment I
3	Sol-gel method and chemical vapour deposition method - properties - optical and electrical	2	Learn about synthesis of nano particles	Seminar	
4	Nano clusters - carbon nano tubes - single walled nano tubes and multi- walled nanotubes	2	Know about nano clusters and carbon nano tubes	Power point presentation and seminar	
5	Properties of carbon nanotubes - applications - Application of nano chemistry in various fields	2	Understand the applications of nano chemistry	Lecture with videos	

Course Instructor: Dr. S. Ajith Sinthuja

Semester - V Major Core V: ORGANIC CHEMISTRY- I Course Code: CC2051

Hours Per week	Credits	Total hours	Marks
5	5	75	100

Objectives:

- To understand symmetry elements, stereo isomerism and conformational analysis of organic compounds.
- To know the methods of synthesis and the reactions of carbonyl, nitrogen containing and heterocyclic compounds.

COs	Upon completion of course students will be	PSO	Cognitive
	able to	Addressed	Level
CO - 1	understand the concept of optical activity, stereoisomerism and stereo isomers.	PSO-1	U
CO - 2	remember the preparation and synthesis of carbonyl, Nitrogen containing and heterocyclic compounds.	PSO-4	R
CO - 3	apply the synthetic methods to synthesize new compounds	PSO-4	А
CO - 4	analyze the synthetic importance of different organic compounds	PSO-2	An
CO - 5	create alternate routes to prepare new compounds.	PSO-5	С

Course Outcome

Total Hours: 75 (Including lectures, assignments and tests)

Unit	Module	Торіс	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Stereoche	mistry				
	1	Optical activity-elements of symmetry, optical activity of compounds containing asymmetric carbon atoms - lactic and tartaric acids. Chirality-achiral carbon molecules - (+), (-) and D, L notations	2	Understand the concept of optical activity	Lecture with models	Evaluation through quiz, slip test, group discussion and problem solving
	2	Projection formulae - Newmann, Fischer, Flying wedge, Sawhorse and projection formulae notation for optical isomers, Cahn - Ingold and Prelog rules, R-S notation	3	Predict the projection formulae and R-S notation of optical isomers	Lecture and group discussion	

	3	Enantiomers and diastereomers, racemic and mesoforms. Racemisation- resolution of racemic mixtures. Walden inversion	2	Categorize optical isomers and define the racemization and asymmetric	Lecture	Formative assessment I
	4	and asymmetric synthesis Optical activity of compounds without asymmetric carbon atoms- biphenyl, allenes and spiranes	2	synthesis Illustrate the optical activity of biphenyls, allenes and spiranes	Lecture with power point presentation	
	5	Geometrical isomerism: Maleic and fumaric acid- aldoximes and ketoximes. Methods of distinguishing geometrical isomers, determination of configuration of ketoximes -Beckmann rearrangement, E-Z notation	3	Differentiate geometrical isomers and determine its E-Z notation	Lecture with power point presentation	
	6	Conformational analysis: Introduction of terms- configuration and conformation, dihedral angle, torsional strain, conformational analysis of ethane, n- butane, 1,2- dichloro ethane and cyclohexane	3	Describe the conformational analysis of simple organic compounds	Lecture with models	
II	Carbonyl	Compounds - I (Aldehydes an	nd Ketones)		
	1	Synthesis of aldehydes from acid chlorides, Stephen's reduction - Gattermann - Koch and Etard reactions	2	Synthesize aldehydes from the given reactions	Lecture	Evaluation through quiz, slip test and group
	2	Synthesis of ketones from nitriles, dialkylcadmium, alkyl lithium and lithium dialkylcuprate and Friedel- Crafts and Hoesch reactions	3	Synthesize ketones from the given reagents and reactions	Lecture	discussion
	3	Mechanism of nucleophilic additions to carbonyl group - addition of HCN, alcohols, thiols, sodium bisulfite, Grignard reagents - condensation with ammonia and its derivatives	2	Illustrate the mechanism of nucleophilic additions to carbonyl group	Lecture	Formative assessment I

	Λ	Aldel Deul-in Dev 1	Λ	Emploin 41 -	Lasterer	
	4	Aldol, Perkin, Benzoin and	4	Explain the	Lecture	
		Knoevenagel condensations,		reactions of		
		Wittig reaction, Mannich		carbonyl		
		reaction, Reformatsky		compounds		
		reaction and Cannizaro				
		reaction				
	5	Oxidation by Tollen's	4	Understand the	Lecture	
		reagent, KMnO ⁴ ,		oxidation and		
		hypohalite, SeO ₂ and		reduction		
		peracids. Reduction by		reactions of		
		H ₂ /Ni, H ₂ -Pd-C, NaBH ₄ ,		carbonyl		
		LiAlH ₄ , MPV, Clemmenson		compounds		
		and Wolff-Kishner				
		reductions, α , β unsaturated				
		aldehydes and ketones -				
		preparation and reactions				
III	Carbonyl	Compounds – II (Carboxylic	acids and t	heir derivatives)		
	1	Preparation of carboxylic	3	Analyze the	Lecture	Evaluation
		acids, acidity of carboxylic		preparation and	with videos	through class
		acids, effects of substituents		properties of		test, quiz and
		on acid strength, acidity of		carboxylic acids		group
		aliphatic and aromatic acids		5		discussion
	2	Reactions of carboxylic	3	Know the	Lecture	
		acids - Hell-Volhard-	_	reactions of		
		Zelinsky reaction, Synthesis		carboxylic acids		
		of acidchlorides, esters and				Formative
		amides, Reduction of				assessment II
		carboxylic acids, methods				
		and mechanism of				
		decarboxylation				
	3	Methods of preparation and	3	Explain the	Lecture	
	C	chemical reactions of halo	C	preparation and		
		acids - Hydroxy acids -		properties of		
		malic, tartaric and citric		carboxylic acids		
		acids - unsaturated				
		monocarboxylic acids -				
		dicarboxylic acids				
	4	Preparation and reactivity	3	Describe the	Lecture	
		of carboxylic acid		preparation and	2000010	
		derivatives - acid chlorides,		reactivity of		
		esters, amides and		carboxylic acid		
		anhydrides - Mechanisms		derivatives		
		of esterification and				
		hydrolysis - acid catalysed				
		reactions				
	5	Relative stability of acyl	3	Understand the	Lecture	
	5	derivatives interconversion	5	relative stability	with power	
		of acid derivatives by		and	point	
		nucleophilic acyl		interconversion of	presentation	
		substitution		acid derivatives	presentation	
		Substitution		actu uerrvauves		

IV	Nitrogen Containing Compounds						
	1	Preparation of nitroalkanes and nitroarenes - Chemical reactions of nitroalkanes and nitroarenes - reduction in acidic, neutral and alkaline media	3	Compare the preparation and reactions of nitroalkanes and nitroarenes	Lecture	Evaluation through class test, quiz and group discussion	
	2	Methods of preparation of alkyl and aryl amines - Ritter reaction, Hofmann ammonolysis - Hofmann degradation - Schmidt, Curtius reaction - Leuckart reaction - Ullmann reaction - Gabriel phthalimide reaction and Hofmann reaction	4	Illustrate the methods of preparation of alkyl and aryl amines	Lecture	Formative assessment II	
	3	Separation of a mixture of primary, secondary and tertiary amines - Hinsberg's and Hofmann's method	3	Understand the separation of primary, secondary and tertiary amines	Lecture with videos		
	4	Basicity of amines - basicity of aliphatic and aromatic amines - reactions of amines	2	Explain the basicity and reactions of aliphatic and aromatic amines	Lecture		
	5	Aryl diazonium salts – benzene diazonium chloride -preparation, reactions and synthetic transformations	3	Describe the synthetic transformations of aryl diazonium salts	Lecture		
V	Heterocyc	lic Compounds					
	1	Aromatic characteristics of pyrrole, furan, thiophene and pyridine	2	Understand the aromaticity of heterocyclic compounds	Lecture	Evaluation through class test, quiz and group	
	2	Comparison of the basicity of pyridine, piperidine and pyrrole	2	Compare the basicity of heterocyclic compounds	Lecture with power point presentation	discussion	
	3	Methods of synthesis and chemical reactions with special emphasis on the mechanism of electrophilic substitution and mechanism of nucleophilic substitution reaction in pyridine derivatives	3	Analyze the mechanism of substitution reactions of pyridine derivatives	Lecture	assessment I	

4	Preparation and reactions of indole, quinoline and isoquinoline - Fischer indole synthesis, Skraup synthesis and Bischler-Napieralski synthesis	4	Explain the synthesis and reactions of indole, quinoline and isoquinoline	Lecture
5	Reactions and mechanism of electrophilic substitution reactions of indole, quinoline and isoquinoline	4	Describe the electrophilic substitution reactions of indole, quinoline and isoquinoline	Lecture and group discussion

Course Instructor: Sr. K. Francy

HOD: Dr. M. Anitha Malbi

Semester - V Major Core VI: INORGANIC CHEMISTRY- I Course code: CC2052

Hours per week	Credits	Total hours	Marks
5	5	75	100

Objectives

- To understand the chemistry of transition, inner transition elements and organometallic compounds
- To know the nomenclature and isomerism in co-ordination compounds
- To learn the principles of analytical chemistry

Course Outcome

COs	Upon completion of course students will be able to	PSO Addressed	Cognitive Level
	able to	Addressed	Level
CO - 1	acquire knowledge on transition and inner	PSO – 1	U
	transition elements		
CO - 2	name the co-ordination compounds	PSO-5	R
CO – 3	analyse the nature of bonding in co-ordination	PSO - 2	An
	and organometallic compounds		
CO – 4	predict the geometry and colour and spin of	PSO - 4	Е
	co-ordination compounds		
CO – 5	minimize the errors in chemical analysis	PSO - 2	А

Total Contact hours: 75 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	d and f-b	lock Elements				
	1	General group trends with special reference to electronic configuration, colour, variable valency, magnetic and catalytic properties and ability to form complexes	3	Know about the group trends	Lecture and power point presentation	Evaluation through short test, assignment quiz Formative
	2	Difference between the first, second and third transition series. Extraction, properties and uses of Ti, V, Mo and W. Toxicity of Cd and Hg - oxides, mixed oxides, halides, and oxohalides of transition metals	3	Differentiate between different transition series	Lecture and power point presentation	assessment I

	3	Synthesis, reactivity and uses of vanadates, chromates, dichromate, molybdates, tungstates, tungsten bronzes, manganate, permanganate, ferrocyanide, ferricyanide,platinum(IV)chloride, chloroplatinic acid and purple of Cassius Interstitial compounds - nitrides, carbides, hydrides, borides of Ti,	3	Know about different salts Learn about interstitial	Illustration and lecture Lecture and seminar	
	5	V, Cr, W and their industrial uses Electronic configuration, oxidation states, colour, spectral and magnetic properties. Causes and consequences of lanthanide contraction - uses of lanthanides	2	compounds Know about lanthanide contraction	Lecture with power point presentation	
	6	Comparison between lanthanides and actinides. Extraction, properties and uses of thorium and uranium, compounds of uranium- zinc uranyl acetate and uranium hexa fluoride	2	Able to compare between lanthanides and actinides.	Lecture and power point presentation	
II	Co-ordin	nation Chemistry - I				
	1	Double salts and co-ordination compounds-differences - types of ligands. Nomenclature, and isomerism- structural isomerism - ionization, hydrate, co-ordination, linkage and co-ordination position isomerism	4	Know about the nomenclature and isomerism	Question answer session	Evaluation through Multiple choice questions, short test, quiz
	2	Stereoisomerism - geometrical isomerism in tetrahedral and octahedral complexes - optical isomerism in octahedral complexes. Theories of co- ordination compounds	4	Differentiate octahedral and tetrahedral complexes	Lecture	Formative assessment I
	3	Werner's theory- postulates - verification of Werner's theory - cobalt ammine complexes. EAN rule - calculation of EAN in metal complexes and carbonyls. Pauling's theory (VBT) - postulates	4	Learn about different theories	Lecture with power point presentation and group discussion	
	4	Application of VBT to square planar and tetrahedral complexes, inner and outer complexes - merits and demerits of VBT	3	Know about inner and outer complexes	Lecture with power point presentation	

III	Co-ordin	nation Chemistry – II				
	1	Shapes of d-orbitals. Crystal field theory - Crystal field splitting of tetrahedral, square planar and octahedral complexes. Factors affecting crystal field stabilisation energy CFSE crystal field splitting energy values and stability of complexes	5	Know about Crystal field theory and factors affecting CFSE	Seminar and power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Weak and strong field ligands - spectrochemical series. Distortion from perfect symmetry - Jahn- Tellar theorem and its effect	3	Learn about weak and strong field ligands	Lecture and problem solving	Formative assessment II
	3	Molecular Orbital Theory (MOT) MO diagrams of ML ₆ type complexes. Stability of metal complexes	3	Know about MO diagrams different complexes	Lecture and problem solving	
	4	Relation between stability constant and dissociation constant - factors affecting the stability of metal complexes from thermodynamic data	2	Gather knowledge regarding stability constant and dissociation	Problem solving	
	5	Irving William series - stabilization of unstable oxidation state. Substitution reactions of square planar complexes - trans effect	2	Learn about square planar complexes	Illustration, seminar and power point presentation	
IV	Analytic	al Chemistry				
	1	Types of errors- determinate and indeterminate errors - minimization of errors. Precision and accuracy- ways of expressing precision	2	Understand about different types of errors	Power point presentation with videos	Evaluation through Multiple choice questions, short test,
	2	Standard deviation- mean deviation - relative mean deviation and coefficient of variance	3	Know about standard deviation and mean deviation	Lecture	quiz Formative assessment I
	3	Accuracy - absolute error- relative error- confidence limit- Rejection of a doubtful value - Q Test and related problems	3	Differentiate between absolute error and relative error	Lecture	
	4	Principles and requirements of gravimetric analysis- mechanism of precipitation - digestion, filtration, washing, drying and ignition	3	Learn the steps in gravimetric analysis	Lecture and power point presentation	

V	5 Organor	Factors affecting solubility of precipitate - co-precipitation and post precipitation - prevention and difference between co- precipitation and post precipitation, precipitation from homogenous solution netallic Chemistry	3	Understand the principles of co- precipitation and post precipitation	Lecture with power point presentation	
	1	Introduction - structure and application of metal carbonyls - mono and poly nuclear carbonyls of Ni, Fe, Cr, Co and Mn - synthesis and structure -nitrosyl compounds	3	Understand the structure and application of metal carbonyls	Lecture with power point presentation	Evaluation through Multiple choice questions, short test,
	2	Classification, preparation and properties -structure of nitrosyl chloride and sodium nitroprusside.	3	Gather knowledge regarding the properties of compounds	Lecture with videos	quiz Formative assessment
	3	Nomenclature of organometallic compounds, 16- and 18- electron rule. Structure and bonding in transition metal carbonyls- polynuclear carbonyls.	3	Learn about the nomenclature of organometallic compounds	Seminar	Π
	4	Bridging and terminal carbonyls, transition metal alkyls, carbenes, and carbynes, and metallocenes. Photochemistry of organometallic compounds.	3	Know about carbonyls	Power point presentation and seminar	
	5	Wilkinson's catalyst and alkene hydrogenation, hydroformylation, Monsanto acetic acid process, Ziegler – Natta catalyst and polymerization of olefins.	3	Understand about different catalysts and reactions	Demonstration	

Course Instructor: Dr. R. Gladis Latha

HOD: Dr. M. Anitha Malbi

Semester - V

Major Core VII: PHYSICAL CHEMISTRY

Course code: CC2053

Hours per week	Credits	Total hours	Marks
6	5	90	100

Objectives:

- To know the concepts of conductance, strong and weak electrolytes
- To understand the working of electro chemical cells, EMF measurement and their applications
- To learn the basic principles and applications of spectroscopy

Course Outcome

COs	Upon completion of course students will be able to	PSO Addressed	Cognitive Level
CO - 1	understand the basic principles of electrochemistry	PSO - 1	U
CO - 2	apply EMF measurements in different fields of chemistry	PSO - 2	А
CO - 3	analyze the working of electrical appliances in day to day life	PSO - 5	An
CO - 4	remember the principle and applications of the different spectral techniques	PSO - 7	R
CO - 5	interpret the IR,NMR and ESR spectra of simple molecules	PSO - 3	E

Total Hours: 90 (Including lectures, assignments and tests)

Unit	Module	Торіс	Hours	Learning	Pedagogy	Assessment/
				Outcome		Evaluation
Ι	Electroch	emistry – I				
	1	Conductance, specific conductance, equivalent conductance and molar conductance, factors affecting conductance of a solution	3	Understand the factors affecting conductance of a solution	Lecture	Evaluation through Multiple choice questions, short test,
	2	Strong and weak electrolytes, variation of equivalent conductance with dilution. Debye- Huckel theory of strong electrolytes, Debye- Huckel-Onsagar equation	3	Know the differences between strong and weak electrolytes	Lecture and group discussion	quiz Formative assessment I

	3	Kohlrausch's law and its applications. Applications of conductance measurements, Determination of λ_{∞} of weak acid and weak base, degree of dissociation of weak electrolytes, solubility and solubility products of sparingly soluble salts and conductometric titrations	2	Understand the applications of conductance measurements	Lecture	
	4	Transport number, determination of transport number by Hittorff's method and moving boundary method	3	Determine the transport number	Lecture with power point presentation	
	5	Hydrolysis, hydrolysis constant, degree of hydrolysis of salts of weak acids and strong bases, weak bases and strong acids	4	Illustrate the hydrolysis of salts	Lecture with power point	
II	6	Determination of degree of hydrolysis, conduction and distribution methods	3	Describe the degree of hydrolysis	Lecture	
11	1	emistry – II Electrochemical cells, reversible and irreversible cells, EMF of cells, determination, cell representation	3	Determine EMF of cells	Lecture	Evaluation through Multiple choice questions,
	2	Single electrode potential, types of electrodes, metal- metal ion electrodes, amalgam electrodes, gas electrodes, metal - insoluble metal salt electrodes and oxidation - reduction electrodes, standard hydrogen electrode (SHE) and calomel electrode	3	Know the types of electrodes	Lecture	short test, quiz Formative assessment I
	3	Nernst equation for electrode potential, Nernst equation for emf of cells, standard electrode potential determination	3	Derive Nernst equation	Lecture with tutorials	

	4	Electro chemical series, thermodynamics of galvanic cells, ΔG , ΔH , ΔS and equilibrium constant (K). Concentration cells with transference and without transference, liquid junction potential and its elimination	3	Explain the thermodynami cs of galvanic cells	Lecture	
	5	Applications of EMF measurements, determination of transport number, valency of an ion, pH of a solution using hydrogen, quinhydrone and glass electrode	3	Know the applications of EMF measurements	Lecture with tutorials	
	6	Potentiometric titrations, acid-base, oxidation- reduction and precipitation titrations. Decomposition potential and overvoltage	3	Illustrate the principle of potentiometric titrations	Lecture with power point presentation	
III	Applied E	Clectro Chemistry				
	1	Application of electrochemical principle in inorganic chemistry, manufacture of NaOH and H_2O_2 . Organic electro chemistry	3	Know the applications of electrochemica l principle in inorganic chemistry	Lecture with videos	Evaluation through Multiple choice questions, short test,
	2	Electro chemical oxidation, Kolbe's synthesis, electro reduction of carbonyl compounds, adiponitrile synthesis	3	Understand the electro chemical reactions	Lecture	quiz Formative assessment II
	3	Electroplating, principle, electro plating of copper, nickel and cadmium, types of coating, protection of pipelines, protection of ships in sea	4	Explain the principle of electroplating	Lecture	
	4	Power sources, primary cells, Lechlanche cell, principle, selection of anode and cathode, alkaline MnO ₂ cells	3	Describe the principle and working of power sources	Lecture	
	5	Secondary cells, characteristics, lead storage, lithium and nickel-cadmium battery	3	Understand the characteristics of secondary cells	Lecture with power point presentation	

	6	Fuel cells, principle,	2	Acquire	Lecture with	
		hydrogen - oxygen fuel cells and alkaline fuel cells		knowledge on the principle and working of	power point	
IV	Spectrosc	copy –I		fuel cells		
	1	Electromagnetic radiation,	3	Understand the	Lecture	Evaluation
		electromagnetic spectrum, general spectroscopic methods, Born- Oppenheimer approximation, types of molecular spectra	5	characteristics of electromagneti c radiation		through Multiple choice questions, short test, quiz
	2	Microwave spectra, principle, intensity, selection rule and applications determination of bond distances in diatomic molecules	4	Illustrate the principle of microwave spectra	Lecture	Formative assessment II
	3	Infra-Red spectra , principle of harmonic oscillator, unharmonicity, selection rules, intensity, modes of vibrations and types, force constant, determination	3	Understand the principle of harmonic oscillator	Lecture with videos	
	4	Applications of IR, important functional groups and elucidation of structure, hydrogen bonding, Fermi resonance, overtones and combination bands	4	Explain the applications of IR spectroscopy	Lecture	
	5	Electronic spectra, selection rules, Frank Condon Principle, types of transitions, applications.	4	Describe the applications of electronic spectra	Lecture	
V	Spectrosc	copy –II				
	1	NMR, introduction, conditions, principle, type, origin, Larmor procession, signals, chemical shift, screening constant, spin- spin coupling	3	Understand the principle of NMR spectroscopy	Lecture	Evaluation through Multiple choice questions, short test, quiz

2	Applications of NMR- elucidation of molecular structure, hydrogen bonding, tautomerism, study of water of crystallization in solids and Nuclear magnetic resonance imaging	4	Know the applications of NMR	Lecture with power point presentation	Formative assessment I
3	ESR spectroscopy, principle, hyperfine structure, application of ESR to hydrogen and methyl radicals	4	Analyze the ESR spectrum of hydrogen and methyl radicals	Lecture	
4	Raman Spectra, introduction, Rayleigh scattering, quantum theory, Raman effect, Raman scattering	4	Explain Rayleigh scattering, quantum theory and Raman effect	Lecture	
5	Conditions for Raman spectra, selection rule, mutual exclusion principle, Raman spectra of CO ₂ and HCN - differences between Raman and IR spectra	3	Know the conditions of Raman spectra		

Course Instructor: Dr. S. Ajith Sinthuja

HOD: Dr. M. Anitha Malbi

Semester - V Elective III: BIO CHEMISTRY

Course code: CC2054

Hours per week	Credits	Total hours	Marks
4	3	60	100

Objectives:

- To understand the biological action of carbohydrates
- To know the functions of lipids, amino acids, proteins and nucleic acids

Course Outcome

COs	Upon completion of course students will be able to	PSO Addressed	Cognitive Level
CO - 1	understand the function and metabolism of	PSO - 1	U
	biomolecules		
CO - 2	recall the importance of biomolecules	PSO - 2	R
CO - 3	compare DNA and RNA	PSO - 5	An
CO - 4	elucidate the structure of different	PSO - 2	А
	biomolecules		
CO - 5	illustrate the industrial and medical	PSO - 8	U
	applications of enzymes		

Total Hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topic	Hours	Learning	Pedagogy	Assessment/				
		-		Outcome		Evaluation				
Ι	Carbohydrate									
	1	Carbohydrates -definition and classification. Glycosides physiological significance. Amino sugars - importance	3	Understand the classification and importance of carbohydrates	Lecture	Evaluation through Multiple choice questions,				
	2	Chemistry of poly saccharides - starch, glycogen, cellulose, inuline, hemi-celluloses, chitin, pectin and lignin	3	Know the structure and functions of polysaccharides	Lecture and group discussion	short test, quiz Formative assessment I				
	3	Glycosaminoglycans - hyaluronic acid, chondroitin sulphate, keratin sulphate, heparin and dermatan sulphate	3	Explain the structure and functions of glycosamino glycans	Lecture with power point presentation					
	4	Blood group substances. Carbohydrate metabolism - Embden - Meyerhof pathway- TCA cycle	3	Illustrate carbohydrate metabolism	Lecture with power point presentation					

II	Lipids								
	1	Lipids - definition and classification. Types of fatty acids - saturated, unsaturated, unusual and essential fatty acids	2	Classify lipids and fatty acids	Lecture	Evaluation through Multiple choice questions,			
	2	Triacylglycerols - chemistry. Characterization - saponification number, iodine number, acid number, RM value and acetyl value	4	Determine the characteristics of lipids	Lecture	short test, quiz Formative assessment I			
	3	Chemistry and functions of phospholipids - lecithin and cephalin. Sphingolipids - sphingomycin.	3	Understand the functions of phospholipids, sphingolipids and sphingomycin	Lecture with tutorials				
	4	Glycolipids - cerebroside, ganglioside Cholesterol - spot tests and structure. Biochemical functions of cholesterol	3	Explain the structure and functions of glycolipids and cholesterol	Lecture				
III	Amino acids and Proteins								
	1	Amino acids and proteins - structure, classification and biochemical importance - one method each to identify 'C' terminal and N terminal amino acids	3	Know the classification, structure and the importance of amino acids and proteins	Lecture with videos	Evaluation through Multiple choice questions, short test, quiz			
	2	Secondary, tertiary and quaternary structures	3	Analyze the structures of proteins	Lecture	Formative assessment II			
	3	Abbreviated names - structure and importance of simple peptide - glutathione, carnosine, anserine, vasopressin and oxytocin	3	Explain the structure and the importance of peptides	Lecture				
	4	Peptide antibiotics - Geramicidin, bacitracin and actinomycin. Transamination - deamination - urea cycle	3	Describe the properties of peptide antibiotics and urea cycle	Lecture				
IV	Nucleic A	cids							
----	-----------	---	---	---	---	--			
	1	Components of nucleic acid - organic nitrogeneous bases - Purines - pyrimidines - sugars - deoxyribose - ribose	3	Describe the components of nucleic acid	Lecture with power point presentation	Evaluation through Multiple choice questions, short test,			
	2	Nucelosides - ribonucleoside- deoxyribonucleoside. Nucleotides- ribonucleotide- deoxyribonucleotide- cyclic nucleotides	3	Differentiate nucleosides and nucleotides	Lecture	quiz Formative assessment II			
	3	DNA - Structure and functions - RNA - types (m-RNA, t-RNA and r- RNA). Nucleases- Endonucleases - DNase - RNase- Exonucleases	3	Compare the structure and functions of DNA, RNA and nucleases	Lecture with videos				
	4	Cyclic nucleotides - functions of cyclic AMP - and cyclic GMP - Nucleoproteins - nucleohistones - nucleoprotamines	3	Explain cyclic nucleotides, nucleoproteins, nucleohistones and nucleoprotamine	Lecture				
V	Enzymes								
	1	Enzymes - characteristics - classification, enzyme specificity. Factors affecting enzyme reaction	4	Understand the classification and characteristics of enzymes	Lecture	Evaluation through Multiple choice questions,			
	2	Michaelis-Menten equation - derivation - inhibition of enzyme action - competitive, non - competitive and uncompetitive coenzymes	4	Explain Michaelis- Menten equation and inhibition of enzymes	Lecture with power point presentation	short test, quiz Formative assessment I			
	3	Mechanism of NAD ⁺ and PLP. Immobilisation of enzymes - industrial and medical application of enzymes	4	Mechanism and applications of enzymes	Lecture				

Course Instructor: Dr. Sheeba Daniel

Semester - VI Major Core VIII: ORGANIC CHEMISTRY - II Course Code: CC2061

Hours per week	Credits	Total hours	Marks
6	5	90	100

Objectives:

- To know the synthesis and structure of carbohydrates, alkaloids, terpenoids and dyes
- To understand the rearrangements, synthetic strategies and terminologies involved in organic synthesis and the role of reagents in organic synthesis.
- To study the basic principles of UV, IR and NMR spectroscopy and instrumentation.

Course Outcome

COs	Upon completion of course students will be able to	PSO Addressed	Cognitive Level
CO - 1	understand the synthetic methodology, reagents and rearrangements in organic chemistry	PSO-1	U
CO - 2	elucidate the structure of carbohydrates, alkaloids and terpenoids	PSO-6	С
CO - 3	synthesize dyes and compounds of synthetic importance	PSO-4	А
CO - 4	analyse the strategies and terminologies involved in organic synthesis leading to new products	PSO-5	An
CO - 5	apply the spectral techniques in structural determination	PSO-6	А

Total Hours: 90 (Including lectures, assignments and tests)

Unit	Module	Торіс	Hours	Learning	Pedagogy	Assessment/
				Outcome		Evaluation
Ι	Carbohyo	lrates				
	1	Carbohydrates: Definition - classification with suitable examples - classification of sugars as reducing and non- reducing sugars - stereochemistry of carbohydrates: D- and L- configurations - erythro and threodiastereomers - anomers and epimers with suitable examples	3	Classify carbohydrates and its stereochemistry	Lecture with videos	Evaluation through quiz, slip test, group discussion Formative assessment I

		combinatorial syntheses		combinatorial syntheses		
		Linear, convergent and		convergent and		assessment I
	2	Retro synthetic analysis -	3	Compare linear,	Lecture	Formative
		target molecule (TM)				u15Cu551011
		interconversion (FGI),		renosynuicsis		group discussion
		(SE), functional group		retrosynthesis		-
		synthetic equivalent		terminologies of		slip test and
	1	Disconnection, synthon,	3	synthetic	Lecture	through quiz,
11	1	Synthetic terminology -	3	Understand the	Lecture	Evaluation
II	Synthetic	methodology and reagents			presentation	
		reactions and subclure		Statell	presentation	
		reactions and structure		starch	point	
	U	Cellulose and starch -	3	cellulose and	with power	
	6	Polysaccharides:	3	Compare	Lecture	
		of sucrose		sucrose		
		Structure and properties		properties of		
		with suitable examples -		structure and		
		with suitable examples - 1,4' and 1,5' linkages		and explain the		
		•		disaccharides		
	5	- glucosidic linkages	S	linkages in	Leciule	
	5	Disaccharides: α - and β	3	Identify the	Lecture	
		monosaccharides		6		
		degradation of		s		
		stepping down - Ruff		monosaccharide		
		Fischer synthesis and	-	degradation of		
	4	Stepping up - Kiliani-	3	Recognize the	Lecture	
		glucose and fructose				
		for cyclic structures of				
		furanose and evidences				
		structures - pyranose and				
		projection cyclic				
		structure - Haworth				
		and evidences for open				
		Fischer open structure		fructose		
		osazone and glycosides -		glucose and		
		aldose - formation of		structure of		
		ketose and ketose to		conversion and		
	3	Conversion of aldose to	3	Understand the	Lecture	
		properties				
		- fructose and its				
		glucose and mutarotation				
		of glucose - anomers of				
		glucose - epimerisation				
		glucose - properties of		S		
		suitable examples –		monosaccharide		
		monosaccharides with		and properties of		
		Classification of		classification		
	2	Monosaccharides:	3	Analyze the	Lecture	

	3	Retrosynthesisof 4- methyl acetophenone, methylcyclohex-3- enecarboxylate, phenylethylbromide, 2- methylcyclopentene and 2-allyl phenol Role of following reagents in organic synthesis: DIBAL, NBS, DCC, trimethylsillyl chloride and methyl lithium - List of nucleophilic reagents and	4	Illustrate the retrosynthesis of the given organic compounds Analyze the role of the given reagents in organic synthesis	Lecture Lecture and group discussion	
III	5 Natural P	electrophilic reagents Malonic ester and acetoacetic ester in the synthesis of monocarboxylic acids - dicarboxylic acids - α,β- unsaturated carboxylic acids and heterocyclic compounds Products and Dyes	4	Explain the role of malonic ester and acetoacetic ester in organic synthesis	Lecture	
	1	Alkaloids: Definition - classification with suitable examples for each class - properties - structural determination - Hoffman exhaustive methylation	3	Understand the classification, properties and structure of alkaloids	Lecture	Evaluation through class test, quiz and group discussion
	2	Sources, isolation, physiological activities and structural elucidation of conine, piperine and nicotine.	4	Elucidate the structure of conine, piperine and nicotine	Lecture	Formative assessment II
	3	Terpenoids: Definition, classification, isoprene and special isoprene rule	2	Explain terpenoids, isoprene and special isoprene rule	Lecture	
	4	Sources, isolation, structural elucidation and uses of citral, geraniol and limonene	3	Elucidate the structure of citral, geraniol and limonene	Lecture	

	5	Dyes: Theory of color and constitution - chromophore, auxochrome, classification according to application and structure. Preparation and uses of methyl orange, congo red, malachite green, phenolphthalein, fluorescein, indigotin and alizarin.	3	Categorize dyes based on their application and structure Describe the preparation and uses of the given dyes	Lecture with videos Lecture with power point presentation	
IV	Rearrang		1	1	1	<u> </u>
	1	Rearrangement to electron-deficient carbon - 1,2 shift - Wagner- Meerwein rearrangement, pinacol- pinacolone rearrangement, dienone- phenol rearrangement; Wolff rearrangement, benzil-benzilic acid rearrangement	5	Understand the mechanism of nucleophilic rearrangement	Lecture	Evaluation through class test, quiz and group discussion Formative assessment II
	2	Rearrangements from oxygen to ring carbon - Fries rearrangement, Claisen rearrangement and benzidine rearrangement.	3	Explain the mechanism of rearrangement reactions	Lecture	
	3	Rearrangement to electron-deficient nitrogen - Beckmann rearrangement, Schmidt rearrangement, Hofmann rearrangement, Lossen rearrangement and Curtius rearrangement.	5	Apply the mechanism of nucleophilic rearrangement	Lecture	
	4	Rearrangement to electron-deficient oxygen: Baeyer-Villiger oxidation, Dakin reaction, cumenehydroper-oxide- phenol rearrangement	5	Analyze the mechanism of nucleophilic rearrangement	Lecture	

V	Spectroso	сору				
	1	UV Spectroscopy: Electromagnetic spectrum - Types of electronic transitions - λmax, chromophores and auxochromes. Bathochromic and hypsochromic shifts. Intensity of absorption - hyper chromic and hypo chromic shifts	3	Understand the concepts of UV spectroscopy	Lecture with videos	Evaluation through class test, quiz, group discussion and problem solving
	2	Application of Woodward-Fieser rules for calculation of λ max for α , β unsaturated aldehydes, ketones, carboxylic acids and esters. Conjugated dienes - acyclic, homoannular and heteroannular, extended conjugated systems-aldehydes, ketones and dienes	4	Predict the λ_{max} value of the given compounds using Woodward- Fieser rule	Lecture and problem solving	assessment I
	3	IR Spectroscopy: Molecular vibrations and origin of IR spectra, IR absorptions- fingerprint region and its significance. H-bonding- inter and intramolecular hydrogen bonding	3	Explain the concept of IR spectroscopy	Lecture with videos	Evaluation through class test, quiz and group discussion
	4	Application in functional group analysis. IR spectrum of alkane, alkene, alkyne, alkyl halide, alcohols and carbonyl compounds	2	Interpret the IR spectrum of the given compounds	Lecture with power point presentation	Formative assessment II
	5	NMR Spectroscopy: Basic principles of Proton Magnetic Resonance, chemical shift and factors influencing it. Significance of number of peaks and peak area. Spin-spin coupling and coupling constant	3	Describe the principle and concept of NMR Spectroscopy	Lecture with videos	

6	Interpretation of NMR	3	Interpret the	Lecture	
	spectra of simple		NMR spectrum	with power	
	compounds- ethyl		of simple	point	
	alcohol, benzene, methyl		organic	presentation	
	chloride, benzaldehyde		compounds	-	
	and mesitylene				

Course Instructor: Dr. Sr. Francy

Semester - VI Major Core IX: INORGANIC CHEMISTRY II Course Code: CC2062

Hours per week	Number of Credit	Total Hours	Marks
5	5	75	100

Objectives

- To understand the concepts and applications of nuclear reactions.
- To know the characteristics of solids and its applications.
- To gain knowledge about the development and uses of bioinorganic compounds.

	Course Outcome						
COs	Upon completion of course students will	PSO Addressed	Cognitive				
	be able to		Level				
CO - 1	understand the types of nuclear reactions	PSO - 1	U				
	and their applications						
CO - 2	know about natural and artificial	PSO - 2	R				
	radioactivity						
CO - 3	classify crystal systems and their structures	PSO - 1	An				
CO - 4	predict the role of bioinorganic compounds	PSO - 2	E				
	in biological systems						
CO - 5	use the solid materials for specific purposes	PSO - 6	А				

Course Outcome

Total Contact hours: 75 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation			
Ι	Nuclear	Nuclear Chemistry I							
	1	Introduction - composition of nucleus and nuclear forces - nuclear stability - mass defect - binding energy - packing fraction	3	Know about the basics in nuclear chemistry	Lecture and power point presentation	Evaluation through class test, quiz and group discussion			
	2	N/P ratio - magic numbers - nuclear models - liquid drop - Shell and collective model	3	Learn about magic numbers	Lecture and power point presentation				
	3	Isotopes - detection and separation - deviation of atomic weights from whole numbers - isobars, isotones and isomers	3	Differentiate between isotopes, isobars and isotones	Illustration and lecture	Formative assessment I			
	4	Radioactive decay and equilibrium - nuclear isomerism - internal conversion	3	Learn about Joule Thomson effect	Lecture and seminar				

	5	Nuclear O velue	3	Know to derive	Lecture and	1
	3	Nuclear Q-value - threshold energy - cross	3	Calculate Q value	power point	
		sections, types of		and threshold	presentation	
		reactions - fission and			presentation	
				energy		
		fusion - modes of				
II	Nuo	radioactive decay				
11	INUC	lear Chemistry II				
	1	Natural and induced radioactivity - radioactive	4	Know about radioactivity	Question answer	Evaluation through
		decay - half-life period -		Tadioactivity	session	class test,
		radioactive displacement			50551011	quiz and
		law - radioactive series -				-
						group discussion
		Radioactive techniques -				discussion
		Geiger Muller and				
		ionization counters				
	2	Natural radioactivity -	4	Differentiate	Lecture	
		Detection and		between various		Formative
		measurement of		radioactive series		assessment I
		radioactivity - radioactive				
		series including				
		neptunium series - group				
		displacement law - Rate				
		of disintegration and half-				
		life period - Average life				
		period				
	2		4	T 1 (T ('41	
	3	Artificial radioactivity -	4	Learn about	Lecture with	
		induced radioactivity -		different nuclear	power point	
		transmutation of		reactions	presentation	
		elements- hazards of			and group	
		radiations - nuclear			discussion	
		energy - nuclear reactors -				
		fission products and				
		fission yields - spallation				
		- photonuclear and				
		thermo nuclear reactions -				
		energy source of the sun				
		and stars - carbon dating -				
		rock dating				
	4	Radioactive waste	3	Know about the	Lecture and	
	-	disposal - applications of	5	disposal of	power point	
		nuclear science in		radioactive wastes	presentation	
		agriculture, biology and		rauloactive wastes	presentation	
		medicine - Atomic power				
		projects in India				
		projecto in muta				
I				1		

III	Solid State Chemistry								
	1	Amorphous and crystalline solids - Laws of crystallography Elements of symmetry Weiss and Miller indices Crystal systems and Bravais lattices - derivation of Bragg's equation	3	Know about the laws of crystallography	Seminar and power point presentation	Evaluation through class test, quiz and group discussion			
	2	Ionic bonding lattice energy Born equation and its derivation, radius ratio rules structures of some ionic crystals Structure of solids comparison of X-ray and Neutron diffraction	3	Learn about ionic bonding	Lecture and power point presentation	Formative assessment II			
	3	Crystal structure of NaCl powder method - Electrical, Magnetic and optical properties of solids band theory semiconductors superconductors. Solid state electrolytes	3	Know about the structure of crystals	Lecture and problem solving				
	4	Types of magnetic behavior, dia, para, ferro, antiferro and ferrimagnetism Hysterisis Solid state lasers inorganic phosphors ferrites	3	Gather knowledge regarding types of magnetic behavior	Problem solving				
	5	Crystaldefects- Schotkydefect Frenkel defect - metal excess defect - metal deficiency defect f centres	3	Distinguish between various defects	Illustration, Seminar and power point presentation				
IV	Bioinorg	ganic Chemistry	1		1	1			
	1	Metal ions in biology- role of sodium - potassium- calcium - magnesium - copper - molybdenum and their vital role in the active site	4	Understand about the role of different metal ions.	Power point presentation with videos	Evaluation through class test, quiz and group discussion			

	2	Metallo proteins - types and functions - metalloenzymes - structure and characteristic features of Vitamin B ₁₂ Biological functions of haemoglobin and myoglobin, - sodium /	4	Know about proteins and vitamins Differentiate between haemoglobin and	Lecture	Formative assessment II
		potassium pump- cytochromes and ferredoxins		myoglobin		
	4	Metal complexes of copper and platinum as therapeutic agents - Biological nitrogen fixation, Photosynthesis: Photosystem-I	4	Learn the types different therapeutic agents	Lecture and power point presentation	
V	Materia	Chemistry				1
	1	Ionic conductors - sodium, β- alumina, sodium-sulphur battery. Intercalation - layered compounds - graphitic compounds	3	Understand about ionic conductors	Lecture and power point presentation	Evaluation through class test, quiz and group
	2	Special applications of solid state materials. High energy battery, lithium cells	3	Explain the applications of solid state materials	Lecture with videos	discussion
	3	Introduction - techniques for synthesis of nanophase materials - sol- gel synthesis- electro deposition - inert gas condensation	3	Learn about nano materials	Seminar	Formative assessment I
	4	mechanical alloying - properties of nanophase materials - applications of nanophase materials, composite materials	3	Know about applications of nanophase materials	Power point presentation and seminar	
	5	Superconductivity - introduction - examples of superconducting oxides - applications of superconducting materials	3	Understand the applications of nano chemistry	Demonstration	

Course Instructor: Dr. R. Gladis Latha

Semester - VI

Major Core XI: PHYSICAL CHEMISTRY

Course Code: CC2063

Hours per week	Credits	Total hours	Marks
5	5	75	100

Objectives:

- To understand the theories of reaction rate, adsorption and catalysis •
- To learn phase rule and phase equilibria
 To know the concepts of symmetry elements, symmetry operations and point groups **Course Outcome**

COs	Upon completion of course students will be able to	PSO Addressed	Cognitive Level
CO - 1	understand the theories of reaction rate, adsorption and catalysis	PSO - 1	U
CO - 2	construct phase diagrams for one and two component systems	PSO - 3	С
CO - 3	recall colligative properties and their applications	PSO - 2	R
CO - 4	predict the point groups of molecules	PSO - 3	Е
CO - 5	construct group multiplication table for simple molecules	PSO - 7	С

*****Total Hours: 75 (Including lectures, assignments and tests)

Unit	Module	Торіс	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Chemical	kinetics				
	1	Rate of reaction, expression of rate, factors influencing rate of reaction, order and molecularity	3	Know the factors influencing rate of reaction	Lecture with videos	Evaluation through class test, quiz, group discussion
	2	Differences between order and molecularity, zero, first and second order reaction, definition- examples, derivation of rate constant and half-life period	3	Analyze the differences between order and molecularity	Lecture	and problem solving. Formative assessment I

	3	Methods of determining order of reaction, differential, integral, half-life and Ostwald's isolation methods. Temperature dependence of reaction rates , Arrhenius equation, significance	3	Understand the methods of determining order of reaction	Lecture	
	4	Temperature coefficient, energy of activation, effect of catalyst, calculation of energy of activation	2	Recognize the energy of activation and effect of catalyst	Lecture	
	5	Theories of reaction rates, collision theory of bimolecular gaseous reactions, activated complex theory, comparison of collision theory	2	Understand the theories of reaction rates	Lecture	
	6	Activated complex theory. Lindeman's theory of unimolecular reactions	2	Compare activated complex theory and Lindeman's theory	Lecture with power point presentation	
II	Phase Eq			1		
	1	Concept of phase, components , degrees of freedom , definitions and examples, derivation of Gibb's phase rule	2	Understand the concept of phase and components	Lecture	Evaluation through class test, quiz and group discussion
	2	Phase diagram for one component system, water and sulphur systems. Two component system, reduced phase rule	2	Compare phase diagrams for one and two component system	Lecture with power point presentation	Formative
	3	Simple eutectic system, lead-silver system, Pattinson's process of de- silverisation of lead, freezing mixtures, KI- H ₂ O system	4	Illustrate the phase diagrams of simple eutectic systems	Lecture	assessment I
	4	Formation of compounds with congruent melting point, zinc-magnesium system and FeCl ₃ -H ₂ O system	4	Analyze the formation of compounds with congruent melting point	Lecture and group discussion	

	5	Formation of compounds	3	Explain the	Lecture	
		with incongruent melting		formation of		
		points, Na ₂ SO ₄ -H ₂ O		compounds with		
		system.		incongruent		
		Solid-gas equilibria,		melting points		
		$CuSO_4$ - H_2O system.		01		
		Efflorescence,				
		deliquescence and				
		hygroscopy				
III	Catalysis	and Adsorption		I	I	1
	1	Catalysis,	2	Understand the	Lecture	Evaluation
		characteristics, different		different types		through class
		types, homogeneous,		of catalysis		test, quiz,
		heterogeneous, acid-base				group
		catalysis and auto				discussion
		catalysis				and problem
	2	Theories of catalysis,	3	Know the	Lecture	solving
		intermediate compound	-	theories of		_
		formation theory and		catalysis		
		adsorption theory		Jan		
	3	Kinetics of enzyme	2	Acquire	Lecture	
	5	catalysis, Michaelis-	2	knowledge on	Lecture	Formative
		Menten equation,		applications of		assessment II
		derivation and		catalysis		
		applications of catalysis		cuturysis		
	4	Adsorption, definition-	3	Elucidate the	Lecture	
		physisorption and	C C	factors	Lootare	
		chemisorption,		influencing		
		differences, factors		adsorption of		
		influencing adsorption of		gases on solids		
		gases on solids		8		
	5	Adsorption isotherms,	2	Categorize the	Lecture with	
		types, Freundlich and	_	types of	videos	
		Langmuir monolayer		adsorption		
		adsorption isotherms		isotherms		
	6	Gibbs adsorption	3	Describe the	Lecture with	
	0	isotherm, BET theory of	5	applications of	power point	
		multilayer adsorption,		adsorption	presentation	
		applications of		uusoipion	presentation	
		adsorption. Adsorption				
		indicators				
IV	Solutions	and Colligative Properties		1	1	<u> </u>
	1	Solutions of non-	3	Illustrate the	Lecture	Evaluation
		electrolytes, solutions of		vapour pressure		through class
		liquids in liquids, vapour		of non-ideal		test, quiz,
		pressure of non-ideal		solutions		group
		solutions, type I, type II				discussion
		and type III				and

	2	Vapour pressure, composition and boiling point, composition curves of completely miscible binary solutions, type I, type II and type III. Theory of fractional, azeotropic and steam distillations	3	Understand the composition curves of completely miscible binary solutions	Lecture	problem solving Formative assessment II
	3	Solubility of partially miscible liquids - phenol- water system, triethylamine – water system and nicotine water system. Colligative properties, definition and examples	2	Explain the solubility of partially miscible liquids	Lecture	
	4	Osmotic pressure, Laws of osmotic pressure, van'tHoff theory of dilute solutions, isotonic solution. Elevation of boiling point, molal boiling point elevation constant or ebullioscopic constant	2	Describe osmotic pressure and elevation of boiling point	Lecture	
	5	Determination of molar mass from elevation of boiling point. Depression of freezing point,molal freezing point depression constant or cryoscopic constant	3	Understand depression of freezing point	Lecture with power point presentation	
	6	Determination of molar mass by depression of freezing point. Abnormal results and van't Hoff factor	2	Know to determine molar mass by depression of freezing point	Lecture with power point Presentation	
V	Group th	eory				
	1	Symmetry elements and symmetry operations, definition of identity (E), proper rotational axis (n), mirror plane (σ), inversion centre (i) and rotation reflection axis (Sn)	3	Understand symmetry elements and symmetry operations	Lecture with videos	Evaluation through class test, quiz and group discussion

2	Symmetry operations generated by symmetry elements- H_2O , NH_3 , BF_3 , $[PtCl_4]^{2-}$, H_2O_2 (cis and trans) and CH_4 as examples	4	Know the symmetry operations generated by symmetry elements	Lecture and problem solving	Formative assessment I
3	Matrix representation of symmetry operations. Comparison of molecular and crystallographic symmetry	3	Explain the symmetry operations	Lecture with videos	
4	Group postulates, abelian and cyclic groups, group multiplication table, molecular point groups	2	Interpret cyclic groups and point groups	Lecture with power point presentation	
5	Point group assignment to simple molecules like H_2 , HCl, CO, H_2O , NH ₃ and CO ₂ . Determination of point groups	3	Determine the point groups for simple molecules	Lecture with videos	

Course Instructor: Dr. M. Anitha Malbi